技術革新 | 原価計算システムと原価改善コンサルティングの株式会社アイリンク https://ilink-corp.co.jp 数人の会社から使える原価計算システム「利益まっくす」 Mon, 04 Mar 2024 10:08:17 +0000 ja hourly 1 https://wordpress.org/?v=6.5.3 https://ilink-corp.co.jp/wpst/wp-content/uploads/2021/04/riekimax_logo.png 技術革新 | 原価計算システムと原価改善コンサルティングの株式会社アイリンク https://ilink-corp.co.jp 32 32 技術革新 https://ilink-corp.co.jp/11915.html https://ilink-corp.co.jp/11915.html#respond Tue, 27 Feb 2024 02:12:24 +0000 https://ilink-corp.co.jp/?p=11915

Related posts:

  1. 「イノベーションを実現する組織とは?その1」~イノベーションとルーンショット~
  2. ロボットは人の仕事を奪う? ~産業ロボットの歴史と最新のロボット技術~
]]>
AI、IoTなど様々な技術革新やそれによるイノベーションは今後どのよう変革をもたらすのでしょうか?

そこで最新の様々な技術やこれまでのイノベーションや技術革新の歴史、発想法など様々なテーマを取り上げました。
 

イノベーションとは何だろうか?それを実現する方法はあるのだろうか?

 

イノベーションを実現する組織とは?その1 ~イノベーションとルーンショット~

イノベーションを起こすような革新的な技術やアイデア「LOON SHOT」は、生まれた直後は実現できるとは思えない「醜い赤ん坊」 です。これを育み育てるのがルーンショット養成所です。アメリカでは国防高等計画局(国防高等計画局(DARPA))がこの役割を果たし、インターネット、GPS、音声認識などのイノベーションが生まれました。

このルーンショット養成所について、サフィ・バーコールの「LOON SHOTS」から2回に分けて説明します。1回目は、王立協会、OSRDの果たした役割についてです。
 

イノベーションを実現する組織とは?その2 ~新しいアイデアを実現する仕組み~

イノベーションを実現する組織について2回目は、イノベーションで起きる偽の失敗とこれを乗り越える方法、そしてルーンショット養成所の考えを中小企業に活かす方法についてです。
 

これから10年で起こる、社会の劇的変化

コンピューターの進歩、SNSの発達により、今日では情報は急速に拡散します。市場の変化も早くなり、人気の商品が短期間に陳腐化してしまいます。この市場の変化は、私たちの仕事や事業にどのような影響をあたえるのでしょうか?そして、人ができる仕事、働き方はどうなるのでしょうか?社会の変化と格差の拡大について考えました。
 

これから10年で起こる、ものづくりの劇的変化

コンピューターの急速な進歩により今まで何十年も研究し、コンピューターには困難と考えられていた音声認識、翻訳、自動運転の実現が目前に迫ってきました。その結果、ものづくりはどう変わるのか?人ができる仕事、働き方はどうなるのか?人工知能やロボットの進化と雇用、社会での格差の拡大について考えました。
 

イノベーターの敗北、真の勝者は模倣者か?

優れたイノベーターが画期的な製品を開発して市場を占有するという話はドラマチックです。しかし実際は、新たな技術を開発してイノベーションを起こした企業が、後から参入した模倣者に市場を奪われてしまうことも多いのです。はたしてイノベーションは企業を強くするのか、モルモットに終わるのか。企業の模倣戦略について考えました。
 

デジタルトランスフォーメーションの真実と本当の怖さ

昨今マスコミに頻繁に登場するデジタルトランスフォーメーション(DX)、どんな意味なのか、漠然としか理解していない方も多いのではないでしょうか?その一方、 「DXに乗り遅れるな!」と多くの企業がDX推進部をつくり予算を投入しています。はたしてDXとは何でしょうか?そこで今回は、DXを取り上げ、DXの話題と実体、そして静かに進行する本当の変革について考えます。
 

「事務ロボットがホワイトカラーの仕事を奪う!」~話題のRPAの特徴と課題~

2015年野村総研とマイケルAオズボーン氏の研究によれば、日本では49%の仕事がロボットやAIに代替可能ということです。今、定型業務を自動的に処理する事務ロボットRPAが大きな話題となっています。このRPAによりどこまでの仕事がコンピューターに代替できるのか?話題のRPAの特徴とその課題について考えました。
 

「人工知能AIの発達で仕事はどう変わるのか」  ~その1 知能とは何か?AIの知能は人を超えるのか?~

AIが進化すれば、なんでもできるようになるかのようにマスコミは報道しています。しかし、知性や感情、人の意識とは何なのか、我々はよくわかりません。知性と感情、意識について、認知心理学とサイバネティクスの観点から、将来AIで世界はどう変わるのか、AIとは何なのか2回に分けて考えました。1回目は意識と知性についてです。
 

「人工知能AIの発達で仕事はどう変わるのか」  ~その2 第三次人口知能ブームの技術とシンギュラリティ~

知性と感情、意識について、認知心理学とサイバネティクスの観点から、将来AIで世界はどう変わるのか、AIとは何なのか2回に分けて考えた2回目、今のAI技術と知性の発達、シンギュラリティについてです。
 

発想法と特許

 

独創的な考えを生み出す柔軟的思考

独創的なアイデアを出すには頭がぼーっとしている方がよいと言われています。脳が疲れて左脳が働かない時の方が右脳が活発に働き革新的なアイデアを出るからです。レナード・ムロディナウ著「柔軟的思考」を元に独創的なアイデアを出す方法について考えました。
 

なぜアイデアが出ないのか?製品開発と発想法の関係

新しいアイデアを出すための発想法は、ブレインストーミングやKJ法など様々な方法が紹介されています。実は創造的な活動は「アイデア出し」に入る前の活動が重要なのです。東京大学 中尾教授の「システムで思考する」、京都大学 逢沢気陽樹の「結果が出る発想法」から、新しいものを生み出すアイデア出しと発想プロセスについて考えました。
 

独創的なアイデアを生み出すための発想法 その1

新製品や新事業だけでなく、日常起きる問題点の解決や改善など様々な場面でアイデアが求められます。そのためには新しいアイデアを生み出す方法が必要です。そこでアイデア発想法を学ぶとともに、偉大な発明家の成功から、ひらめきに加えて必要なことを考え、どのように自分達が発想力を豊かにするかを2回に分けて考えました。1回目はひらめきを生み出す手順についてです。
 

独創的なアイデアを生み出すための発想法 その2

アイデア発想法を学ぶとともに、偉大な発明家の成功から、ひらめきに加えて必要なことを考え、どのように自分達が発想力を豊かにするかを2回に分けて考えた2回目、予想外の事態に対処する柔軟さとコラボレーションの力についてです。
 

リチウムイオン電池における特許をめぐる戦い

特許を取っても技術を独占使用できるとは限りません。後発企業がより良い製品を開発して市場に参入するからです。そこで世界に先駆けリチウムイオン電池を実用化した旭化成の吉野氏の著作から、どうして特許で防ぐことができないのか悪魔のサイクルについて考えました。さらに特許から見た次世代電池開発競争についても考えました。
 

その他先端技術や知識

 

カオス理論が常識を覆す~バブルは再発し、野生動物は激減する、難解なカオス理論を易しく解説~

金融工学は様々なリスクを最小にして利益を最大化するようつくられてます。しかし本当は証券や通貨の変動は金融工学が考える前提より激しく変動していたのです。なぜなら多くの事象は金融工学が前提とする確率と統計よりも、カオス理論に従うからです。そこでマンデルブロ氏の「禁断の市場」より、現在の金融工学の問題点と、難解でわかりにくいカオス理論について説明しました。
 

次世代移動体通信5Gでビジネスはどう変わるか?

ZTE、ファーウェイに対するアメリカの厳しい措置を発端とした米中貿易摩擦は、次世代通信規格5Gの普及とその機器メーカーの問題と合わせて、日本、ヨーロッパを巻き込んだ争いになりました。この5Gとはどのようなものか、その特徴と可能性について考えました。
 

インターネット以来の大発明ブロックチェーンその1 ~ビットコインの成り立ちと特徴~

2009年、サトシ・ナカモトという人物の書いた9ページの論文から生まれた、ビットコインは多くの人々を熱狂させ、ビットコインバブルを生み出しました。その一方で、彼の考えたブロックチェーン技術は、インターネット以来の発明といわれ、今やメガバンクや各国の中央銀行がその仕組みの導入を検討しています。このブロックチェーンとは何なのか、世界はどう変わるのか2回に分けて考えました。1回目は通貨の役割とビットインについてです。
 

インターネット以来の大発明その2 ~ビットコインの技術、マイニングとプルーフオブワーク~

ブロックチェーンとは何なのか、世界はどう変わるのか2回に分けて考えた2回目は、ビットコインの革新的なところ、セキュリティの仕組みとマイニングについてです。
 

インターネット以来の大発明、ブロックチェーンその3 ~フィンテックとスマートコントラクト~

ブロックチェーンとは何なのか、世界はどう変わるのか2回に分けて考えた3回目は、ブロックチェーン技術の将来性と中央銀行が暗号通貨に取り組む理由、そして最新のフィンテックについてです。

インダストリー4.0はものづくりを変えるのか? その1

インダストリー4.0は、昨年あたりからマスコミにさかんに取り上げられ、「ものづくりが変わる!」とセンセーショナルに書かれています。でも具体的には何なのか、良く分からない方も多いと思います。本当にイノベーションが起きるのか、それともかつてのFMSやCIMのように忘れ去られてしまうものなのか2回に分けて考えました。1回目はインダストリー1.0から4.0までの流れとインダストリー4.0の技術についてです。
 

インダストリー4.0はものづくりを変えるのか? その2

インダストリー4.0でイノベーションが起きるのか、それともかつてのFMSやCIMのように忘れ去られてしまうものなのか2回に分けて考えました。2回目はインダストリー4.0の実例と課題についてです。
 

ゲームのルールが変わる、コモディティ化 その1

突然ビジネスのゲームのルールが変わり、それまで市場のトップにいた企業が一気に転落することがあります。そのひとつがコモディティ化です。ルールが変わると今まで築いた優位性がなくなります。取引先の商品がコモディティ化すれば業績が急速に悪化し、自社の仕事にも影響します。そこでコモディティ化とは何か、どうしてコモディティ化は起きるのか、どう対処すればよいのか、2回に分けて考えました。1回目はゲームのルールが変わった例とコモディティ化についてです。
 

ゲームのルールが変わる、コモディティ化 その2

コモディティ化とは何か、どうしてコモディティ化は起きるのか、どう対処すればよいのか、2回目はコモディティ化のメカニズムとコモディティ化に陥らないようにする方法についてです。
 

]]>
https://ilink-corp.co.jp/11915.html/feed 0
「イノベーションを実現する組織とは?その2」~新しいアイデアを実現する仕組み?~ https://ilink-corp.co.jp/8543.html https://ilink-corp.co.jp/8543.html#respond Mon, 03 Apr 2023 06:51:54 +0000 https://ilink-corp.co.jp/?p=8543 No related posts. ]]> 画期的なアイデアやビジネスを実現し、イノベーションを生み出すには、
アイデアを生み出すタイプの人(アーティスト)
が必要です。

ところが企業には、
既存事業をうまく回す人(ソルジャー)
も必要で、この両者は価値観が全く合わず常に衝突します。

しかし、この2つの人材をうまく活かして、数々のイノベーションを実現した組織があるのです。「LOON SHOTS」の著者サフィ・バーコールは、この組織をルーンショット養成所と呼びました。
 

このルーンショットとブシュ・ヴェイル ルールについて、「イノベーションを実現する組織とは?その1」~イノベーションとルーンショット~で述べました。

ここでは、

アメリカのOSRDや DARPAのようなルーンショット養成所は多くのルーンショットを実現したのに、

なぜ他の組織ではルーンショットが死産するのか?

偽の失敗とそれを見極めるための

「ブシュ・ヴェイル ルール」

について述べます。
 

ルーンショット

Loonとは、「頭がいかれた、変な」という意味です。バーコールは、

「誰からも相手にされず、頭がおかしいと思われるが、実は世の中を変えるような画期的なアイデアやプロジェクト」

つまりブレイクスルーです。

つまり
ムーンショットは目標、
ルーンショットはやり方
と言えるでしょう。

ルーンショットには以下の2種類があります。
 

◆Pタイプルーンショット

製品(Product)の驚くべきブレイクスルーです。このタイプのルーンショットに対し、最初人々は
「ものになりそうにない」「ヒットしようがない」
と思います。
ところがふたを開けると大ヒットします。そして古い製品は駆逐され、新しい製品やサービスが取って代わります。これまでのビジネスは「突然死」し、劇的な変化が起きます。
 

◆Sタイプルーンショット

戦略(Strategy)の驚くべきブレイクスルーです。特に新しい技術はなく、新しいビジネスのやり方や既存製品の新しい応用です。
このタイプのルーンショットは、市場の複雑な振る舞いに隠されてしまい、外からは変化がわかりません。いつの間にか市場を席巻したグーグルやフェイスブックなどがこれに当てはまります。
 

【フランチャイズ】
バーコールは「従来の事業をひたすら拡大する組織」をフランチャイズと呼びました。
フランチャイズでは、ルーンショットは無視されるか、実現が阻害されます。
 

なぜルーンショットが日の目を見ないのか?

アメリカはOSRDや DARPAといったルーンショット養成所が多くのルーンショットを実現しました。

なぜ他の組織ではルーンショットが死産するのでしょうか。
 

イノベーションは3度死ぬ

 
ひとつは、ルーンショットは何度も失敗するからです。

1988年ノーベル生理学・医学賞を受賞したジェームズ・ブラック卿は、

「最低3回は失敗しないと、よい薬ではないぞ」

と言っています。
 

◆三共が逃した20世紀最大の医学的発見◆

1960年代、コレステロールが増えることで心臓病のリスクが高まることが発見されました。

1972年三共株式会社(現在の第一三共株式会社)中央研究所の遠藤章氏(以降、遠藤)は6,000種類以上の菌類の中からコレステロールの産生を遮断する菌類があることを発見しました。これをもとにコレステロールを低下させる薬メバスタチンを開発しました。
 

【1度目の死】
しかしアメリカでの臨床試験は失敗しました。正常な細胞はコレステロールを必要とするため、コレステロール低下剤は正常な細胞の機能を阻害すると断定されました。

【2度目の死】
遠藤はその後さらに動物実験を続けました。ところがラットにメバスタチンを投与したところ、コレステロールの低下が見られませんでした。

【3度目の死】
ところがラットに変えて鶏で実験したところ、実験は成功しました。

その頃、コレステロールを下げる方法を探していたテキサス大学のブラウンとゴールドスタインは、たまたま遠藤の論文を見つけたことでメバスタチンの存在を知りました。そこで遠藤に連絡を取り、彼から受け取ったサンプルをテストしたところ、メバスタチンが効果のあることを確認しました。ブラウンとゴールドスタインは、遠藤に人への臨床試験を勧めました。

そして1977年先天的にコレステロールが高く常に心臓発作のリスクにさらされていた18歳の少女にメバスタチンを投与したところ、大きな効果がありました。これに世界中が注目しました。

ところがその後の安全性試験で、試験投与した犬にがんが見つかりました。ここでついに三共はメバスタチンから手を引きました。

3度目の死です。
 

【疑問を持ったブラウンとゴールドスタインの成功】
同じ時期アメリカの製薬大手メルクも同様に菌類のスクリーニングを行い、遠藤と同じ酵素を発見しました。三共の試験結果に疑問を持ったブラウンとゴールドスタインは、メルクに試験のやり直しを求めました。メルクはFDAの協力も得て試験した結果、試験は成功しました。そしてメルクは1987年「メバコール」として商品化しました。

遠藤の発見したメバスタチンは

「コレステロールのペニシリン」「20世紀最大の医学的発見」

といわれています。メバコールはメルクの累計900億ドルの売上をもたらし、ブラウンとゴールドスタインはノーベル賞を共同受賞しました。
 

画期的ながん治療薬に対する賛否両論

1971年、ハーバード大学医学部 細胞生物学教授で、Children’s Hospitalの小児外科でもあるジューダ・フォークマンは、癌の成長を妨げるには、

癌に血液を送るための毛細血管をブロックすればよい

ことに気づきました。そうすれば癌の成長を止めるだけでなく、癌を縮小することも可能と考えました。しかしこの彼の主張を信じる者はなく、一部の専門家からは「幻想だ」というレッテルを貼られました。けれどもフォークマンは専門家の否定的な批判に屈せず、薬剤の開発に励みました。
 

その後30年間、フォークマンの開発した血管成長阻害剤エンドスタチンの評判は、

「画期的な薬」と「ものにならない薬」

という両極端な評判の間を行ったり来たりしました。そしてフォークマンが新しい癌治療薬を考えてから32年も経った2003年、デューク大学のハーバート・ハーヴィッツがフォークマンのアイデアを基にした薬が高い延命効果を発揮したことを発表しました。さらに中国で肺癌の治療に用いられ、ボストンでは4人の患者が癌から回復し新たな人生を得ました。このフォークマンのアイデアをもとにつくられたアバスチン(一般名ベバシズマブ)は、2004年2月米国で承認され、それ以来27の国で癌の治療に使用されています。

30年もの間、賞賛と嘲笑をかわるがわる浴びたフォークマン、彼は

「リーダーの値打ちは尻に刺さった矢の数でわかる」

と述べています。
 

偽の失敗を見極める

このようにイノベーションが死の危機に何度も面するのは、実は「偽の失敗」のためです。だからリーダーは、良くない結果が出た時、それが真の失敗なのか、偽の失敗なのか、

失敗を見極める力が必要

なのです。

スタチンの開発では、遠藤はこの失敗を慎重に見極め、別の方法でも実験して2度の失敗を乗り越えました。しかし3度目の失敗が起きた時、遠藤はすでに大学に異動して、三共にはいませんでした。三共には偽の失敗を見極められる人がいなかったのです。
 

SNSの失敗の理由

2004年フェイスブックがスタートした時、SNSはすでにフレンドスター、マイペースなど数多くのスタートアップが競っていました。しかしどのSNSも顧客の流出に悩んでいました。どのSNSもロイヤルユーザーを獲得できず成長が行き詰っていたのです。そのため多くの投資家はSNSを「キワモノ」と決めつけ相手にしませんでした。

投資ファンドのピーター・ティールとケン・ハワリーは、フェイスブックに投資するかどうかを判断するため、フレンドスターに詳しい友人に連絡を取りました。そして、なぜ利用者がサイトを去るのか調査しました。

その結果、利用者がサイトを去る原因は、サイトがよくクラッシュするためでした。つまりSNSのビジネスモデルが弱いのではなく、ソフトウェアの不具合が原因、つまり偽の失敗が原因だったのです。ピーター・ティールはフェイスブックに50万ドルを投資し、8年後に持ち株を10億ドルで売却しました。
 

多くのイノベーターが陥る「モーゼの罠」

イノベーターが組織のトップにある時、トップはアイデアを決定し、その実行をすべて司る「全能の立場」にあります。社内の誰も反対できません。その結果、市場の声や部下の意見に耳を貸さず、自分のアイデアを過大評価してしまいます。これが

「モーゼの罠」

です。
 

【目の前のものが見えなかったエドウィン・ランド】

エドウィン・ランドは、19歳で偏光フィルターの原理を発見しました。そして戦時中偏光サングラスを軍に納入することで事業は大いに拡大しました。しかし戦後、軍からのサングラスの受注が激減し経営危機に陥りました。その時、娘の(撮った写真を)「どうして今見られないの」という問いからインスタント写真を思いつきました。

彼の開発したポラロイドカメラは1950年に白黒、1963年にカラーと進化し、ポラロイド社は大いに発展しました。自分たちの撮った写真を現像所に出さなくて済むという利点は、写真を他人に見られたくないカップルという新たな市場も生まれました。

こうして発展したポロライド社の次のイノベーションが、インスタント映画「ボラビジョン」でした。ところがすでに市場には家庭用ビデオカメラがありました。本体が2,500ドル、3分間のカセットが30ドルするボラビジョンより、何度も撮り直しができる磁気テープが優位なことは明らかでした。
 

ベル研究所が生んだルーンショット「CCD」を使って、1980年代にはデジタルカメラが生まれました。ボラビジョンの失敗の後、遅ればせながらポラロイド社もデジタルカメラを1996年に発売しましたが、時すでに遅く、2001年にポラロイド社は経営破綻しました。

実はそのはるか前からランドはデジタルカメラを知っていたのです。

1971年に偵察衛星の国家プロジェクトに関与していたランドは、当時はまだ新しい技術のCCDを偵察衛星に搭載し、写真をデジタル信号に変換し地上に送ることを、当時のニクソン大統領に進言していたのです。デジタルの良さを十分に知っていたはずのランドが、なぜ自社の商品のデジタル化に乗り遅れたのでしょうか?

フィルムという「儲ける術」に囚われていたのかもしれません。
 

【スティーブ・ジョブズ1.0】

アップルⅠとⅡで成功を収めたスティーブ・ジョブズですが、その後パソコン市場には多くの競合が参入し、アップルは急速にシェアを奪われました。

その頃、ゼロックス パロアルト研究所からアップルに来たジョン・ラスキンは、安価で使いやすいグラフィック対応のコンピューターを考案しました。ラスキンの考案したコンピューター「マッキントッシュ」は当初はとてもよく売れました。ジョブズは

マッキントッシュのチームを公然と「アーティスト」と呼び、

アップルⅠ、Ⅱのチームを「間抜け」と呼んで、

アーティストに対しソルジャーをあからさまに見下していました。

その後アップルの経営は機能不全に陥り、ジョブズはアップルを追い出されます。アップルを追い出されたジョブズが開発したのがNeXTです。価格は1万ドル、光学ドライブや8メガバイトのメモリー搭載の黒い光沢の美しい高性能なマシンです。しかし発売後売れたのは1年間で400台に過ぎず、NeXTは大失敗に終わりました。

図1 NeXT

図1 NeXT


 

なぜ復帰後のジョブズは数々のイノベーションを起こすことができたのか

【スティーブ・ジョブズ2.0】

エド・キャットマルとアルヴィ・スミスは、ルーカスフィルム(ジョージ・ルーカスの会社)のコンピューター部門で、スターウォーズのCG(コンピューターグラフィック)を制作していました。彼らが開発したCGのソフトウェアは、現在も主流となる手法でした。また開発したコンピューター「ピクサー」は、様々なCGを実現できる高性能なコンピューターでした。

お金が必要になったジョージ・ルーカスは、このコンピューター部門を売りに出しました。なかなか買い手がつかないこの会社を買ったのがジョブズでした。このピクサーが制作した最初のCG映画がトイストーリーです。トイストーリーは大ヒットし、ピクサーはIPO(証券取引所に上場)しました。ジョブズは思わぬ大金を手にすることができました。
 

しかし大金以上にジョブズがピクサーから得た宝物は、

ルーンショットを育てることと共にルーンショットと既存事業(フランチャイズ)のバランスのとり方を学んだことでした。

ジョブズはPタイプのルーンショットと同様にSタイプのルーンショットも重視するようになりました。

「最高のイノベーションとは時に企業そのもの。私はそう気づいた。組織をどうつくるかということ」

 

iTunesはそれまで無料でダウンロードされていた音楽を1曲99セントで販売しました。当初は誰もそんなことはうまくいかないと思っていました。ところがiTunesは最初の6日間で100万曲がダウンロードされました。

さらにジョブズは有料(中には無料も)でアプリがダウンロードできるAppstoreを開発しました。さらにジョブズがいない間、他社にライセンス供与されていたマッキントッシュのソフトウェアの契約をすべて解約し、

アップルのPCをクローズなエコシステムにしました。

アップルのPCの価値は大いに高まり売り上げを大きく伸ばしました。

クローズなエコシステムは、過去にIBMがマイクロソフトに対抗してOS/2で取り組みましたが失敗しました。

しかしこの失敗は偽の失敗だったのです。
 

ルーンショットを育てるルール(ブッシュ・ヴェイルルール)

相分離を実行

大事なことは

発明家(アーティスト)の集団と、

オペレーター(ソルジャー)の集団を

分けることです。

新しいことに取組む集団は、既存の仕事をうまくやる能力には長けていません。

逆に既存のことをうまくやる集団に新しいことに取組んでもうまくいきません。

しかも大事にしている価値観が違うため、1つの集団に両者を入れると反目しあってパフォーマンスが低下してしまいます。

図2 ソルジャーとルーンショット養成所の分離

図2 ソルジャーとルーンショット養成所の分離


 

それに管理の細かさも違います。

アーティストには柔軟な目標と緩い管理、

ソルジャーには定量的な目標ときめ細かな管理

が適しています。その点、成果主義や研究開発の管理などフランチャイズの仕組みをアーティストに適用すれば、ルーンショットの可能性が低くなります。

1968年に東芝中央研究所 和田所長は

「研究者には割れないガラス、(ステンレスでない)錆びない鉄のようなざっくりとしたテーマを与えて勝手にやらせている、ただし毎月レポートを出させ脱線していないか、停滞していないかだけはチェックする」

と語りました。
 

そしてアーティストは、SタイプとPタイプの両方のルーンショットに目を光らせる必要があります。小さな戦略の変化が思わぬ効果を生む場合があります。誰もうまくいくとは思わない技術や製品が、実は実現可能なこともあるのです。
 

動的平衡を築く

アーティストもソルジャーも、どちらも組織の成功には不可欠です。しかしトップがアーティストの場合はソルジャーを軽んじ、トップがソルジャーの場合はアーティストを軽んじる傾向があります。

特にリーダーに成功体験があると、

自らすべてを決めようとしてモーゼの罠に陥ります。

しかし1人の決定がいつも正しいとは限りません。

つまりリーダーの最も大事な仕事はアイデアを出すことでなく、

ルーンショットが現場や市場に適用され、現場や市場の意見がしっかりとアーティストにフィードバックする仕組み作ること

です。
 

またルーンショットを適用するタイミングも重要です。早すぎればルーンショットは粉砕され、遅すぎればルーンショットの優位性が消えてしまいます。

そのためヴェネヴァー・ブッシュは細部から距離を置き、全体のバランスをとることに力を入れました。

図3 境界を生きる……全体バランスの境界

図3 境界を生きる……全体バランスの境界


 

ソルジャーはルーンショットに反対します。しかもアーティストは生まれたばかりのルーンショットには、欠点しか目がいきません。

そのため文句ばかり言う現場に「一度試して意見を出してください」と強く言えるのは、

アーティストとソルジャーの両方に精通し、しかもある程度の権限を持った人だけ

です。例えば、ブッシュは陸軍長官にまで電話をかけて、無関心な陸軍にルーンショットの活用を説得しました。

ブッシュは下図のようにアーティストとソルジャー二つの集団を分離させ、その上で二つの集団の交流を高めました。

図4 2つの集団の交流

図4 2つの集団の交流


 

さらにリーダーはルーンショットの保護者の役割も担います。それには

データの持つ意味を理解し、さらにアーティストの現場感を尊重しなくてはいけません。

三共の遠藤が、2度の失敗を乗り越えてプロジェクトを継続できたのは、自ら実験に取り組み失敗は「偽の失敗」と看破したからです。しかし遠藤が退社した三共には、3度目の失敗が擬陽性であることを見破る人はいませんでした。

開発会議などで出てきたアイデアに対し「その方法は過去にやって失敗した」と出てきたアイデアを否定する人がいます。しかしその失敗は偽の失敗かもしれないのです。
 

システムマインドを育む

  • レベル0のチーム 評価しない
  • レベル1のチーム どうして失敗したのか考える(結果重視のマインド)
  • レベル2のチーム どうしてその選択をしたのか、理由を考える(システムマインド)

 

仕事の結果に対し、そのレベルに応じた評価が大切です。なぜなら

  • 「結果が悪かったからといって意思決定が悪かったとは限らない」
  • 「結果が良かったからといって意思決定が良かったとは限らない」

からです。

運が良くてたまたまうまくいく場合もあるし、意思決定は良くても思うような結果が出ないこともあります。
結果にとやかく言うのではなく、意思決定の質を向上させて、システムマインドを育むことが重要です。
 

マジックナンバーを増やさない

自分の評価を良くするための政治的活動は、システムマインドの妨げになります。政治活動をなくすために、昇進や評価は直属の上司でなく第三者が行うようにします。あるいは金銭的報酬や地位でなく、仲間からの評価や承認など、非金銭的報酬を使います。

重要なのは集団のサイズです。集団のサイズが一定の規模(マジックナンバー)を超えると、構成員のインセンティブは

ルーンショット重視から政治重視

に変わります。そうならないようにするために集団の状況をよく観察し、問題があるようならば集団のサイズを適正なサイズに小さくする必要があります。
 

社員のスキルと仕事のミスマッチがあれば解消します。そして各自が自分の役割に目いっぱいエネルギーを注ぐようにします。なぜなら、人はヒマがあれば政治活動(社内での人脈づくりや自己PR)を始めるからです。

図5 集団のサイズ

図5 集団のサイズ


 

自社の組織に取り入れる

組織の活性化とは、アーティストとソルジャーが組織の中で一定のバランスで存在し、それぞれがその能力を最大限発揮している状態にすることです。

ソルジャーばかりでは、現状維持一辺倒で変化に対応できなくなります。一方アーティストばかりでは、定型的な業務がうまくできず、混乱が起きて効率が低下します。
 

中小企業に必要な小さなイノベーション

市場の拡大が望めない、さらに市場が縮小する日本では、新たな試みに取組むのが難しい滋養今日です。いきおい守り一辺倒になりかねません。

しかし市場の縮小も新たな変化です。従来のやり方が決して適切とは限りません。少子高齢化、地方の人口減少、都市部での格差拡大という変化に合った新たな製品やサービス、あるいは業務が必要になってきます。

その点で規模の小さい中小企業こそ、変化を的確に捉え小さなイノベーションに取組む必要があるのではないでしょうか。

ところが長年、従来の仕事のやり方、サービスを続けてきた企業には変化を起こした経験が少なく、社員の多くが変化に対して抵抗します。中には全員ソルジャーという会社もあります。
 

トップがアーティストの問題

あるいは経営者が危機感を感じ、新たな取組をトップダウンで実行しても、社員がそれに同調しないこともあります。見かけ上は取り組んでいても本心ではやりたくないため、既存の業務が多忙になるとそちらを優先してしまいます。これは自主テーマの研究開発や改善活動などによくみられます。

原因は、トップがアーティストでも社員がソルジャーのため、アーティストの考え方、価値観を理解できていないからです。
 

相分離と育成を組込む

新たな取組、ルーンショットを行うためには、アーティストのチームを結成し、ソルジャーのチームとは分けなければなりません。完全にアーティストでなくても、アーティストの要素のある社員でアーティストチームを結成します。アーティストはソルジャーの仕事には向いていないため、できればアーティストの仕事に専念させます。そしてソルジャーとは異なった管理をします。

そして、このアーティストとソルジャーのバランスを取るのは経営者しかできません。
 

参考文献

「LOON SHOTS」 サフィ・バーコール著 日経BP
 

経営コラム ものづくりの未来と経営

人工知能、フィンテック、5G、技術の進歩は加速しています。また先進国の少子高齢化、格差の拡大と資源争奪など、私たちを取り巻く社会も変化しています。そのような中

ものづくりはどのように変わっていくのでしょうか?

未来の組織や経営は何が求められるのでしょうか?

経営コラム「ものづくりの未来と経営」は、こういった課題に対するヒントになるコラムです。

こちらにご登録いただきますと、更新情報のメルマガをお送りします。
(登録いただいたメールアドレスは、メルマガ以外には使用しませんので、ご安心ください。)

経営コラムのバックナンバーはこちらをご参照ください。
 

中小企業でもできる簡単な原価計算のやり方

 
製造原価、アワーレートを決算書から計算する独自の手法です。中小企業も簡単に個々の製品の原価が計算できます。以下の書籍、セミナーで紹介しています。

書籍「中小企業・小規模企業のための個別製造原価の手引書」

中小企業の現場の実務に沿ったわかりやすい個別製品の原価の手引書です。

基本的な計算方法を解説した【基礎編】と、自動化、外段取化の原価や見えない損失の計算など現場の課題を原価で解説した【実践編】があります。

ご購入方法

中小企業・小規模企業のための個別製造原価の手引書 【基礎編】

中小企業・小規模企業のための
個別製造原価の手引書 【基礎編】
価格 ¥2,000 + 消費税(¥200)+送料

中小企業・小規模企業のための
個別製造原価の手引書 【実践編】
価格 ¥3,000 + 消費税(¥300)+送料
 

ご購入及び詳細はこちらをご参照願います。
 

書籍「中小製造業の『製造原価と見積価格への疑問』にすべて答えます!」日刊工業新聞社

書籍「中小製造業の『製造原価と見積価格への疑問』にすべて答えます!」
普段疑問に思っている間接費・販管費やアワーレートなど原価と見積について、分かりやすく書きました。会計の知識がなくてもすらすら読める本です。原価管理や経理の方にもお勧めします。

こちら(アマゾン)から購入できます。
 
 

 

セミナー

原価計算と見積、価格交渉のセミナーを行っています。

会場開催はこちらからお願いします。

オンライン開催はこちらからお願いします。
 

 

簡単、低価格の原価計算システム

 

数人の会社から使える個別原価計算システム「利益まっくす」

「この製品は、本当はいくらでできているだろうか?」

多くの経営者の疑問です。「利益まっくす」は中小企業が簡単に個別原価を計算できるて価格のシステムです。

設備・現場のアワーレートの違いが容易に計算できます。
間接部門や工場の間接費用も適切に分配されます。

クラウド型でインストール不要、1ライセンスで複数のPCで使えます。

利益まっくすは長年製造業をコンサルティングしてきた当社が製造業の収益改善のために開発したシステムです。

ご関心のある方はこちらからお願いします。詳しい資料を無料でお送りします。

 

]]>
https://ilink-corp.co.jp/8543.html/feed 0
「イノベーションを実現する組織とは?その1」~イノベーションとルーンショット~ https://ilink-corp.co.jp/8539.html https://ilink-corp.co.jp/8539.html#respond Mon, 03 Apr 2023 06:42:28 +0000 https://ilink-corp.co.jp/?p=8539

Related posts:

  1. 「イノベーションを実現する組織とは?その2」~新しいアイデアを実現する仕組み?~
]]>
イノベーション実現の物語の多くは、
「画期的なアイデアを生み出した人が主役となり、苦難の末実現する」
というものです。
実際は主の他に脇役に当たる人も舞台上には数多くいます。

そうした中で生まれた新しいアイデアは不完全な点の多い「醜い赤ん坊」です。多くの組織では、この醜い赤ん坊は無視され、イノベーションの機会は失われます。

ところがこれをシステマティックに「醜い赤ん坊を育み、実現した組織」がありました。このイノベーションを実現する組織について考えました。
 

中小企業とイノベーション

イノベーションは「技術革新」とも訳されたこともあって、どうしても革新的な製品、例えばソニー ウォークマンやアップル iPhoneなどを想像します。そして中小企業にはイノベーションは関係がないと思ってしまいます。

しかしこれまでやったことのない取組や方法、新しい市場や新しい商圏への挑戦は、中小企業にとってはリスクの高い挑戦です。中小企業がこれらに取り組むことは、大企業がイノベーションに取組むのに匹敵する困難さ、内部の抵抗、リスクがあります。
 

「業況の悪化に経営者が意を決して新たな事業に取組んでも、社員の反応は鈍く積極性が感じられない」、あるいは「熱心な社員が新たな顧客へ販売や新しい商品の提案をしても、経営者が拒絶し、その社員は会社を去ってしまう。」
なぜこのようなことが起こるのでしょうか?

企業には

アイデアを生み出す人(アーティスト)

既存事業をうまく回す人(ソルジャー)

という全く異なるタイプの人材がいます。2つは価値観が全く異なり常に衝突しトラブルを起こします。

ところが2つの人材の良さをうまく活かし、数々のイノベーションを実現した組織があったのです。それらの組織に共通するのは「あるルール」です。

サフィ・バーコールは、その著書「LOON SHOTS」で、そのルールを

「ブシュ・ヴェイル ルール」

と名付けました。この「ブシュ・ヴェイル ルール」とはどんなルールでしょうか?
 

イノベーションの呼び方

サフィ・バーコールは「LOON SHOTS」でイノベーションを2種類に分けています。
 

ムーンショット

月ロケットの打ち上げのようなビッグプロジェクトことです。「大きな意義を持つと誰からも期待される、野心的でお金のかかる目標」です。実現するにはこれまでの取組を着実に積み上げた土台に、新たなブレイクスルーを加える必要があります。
 

ルーンショット

Loonとは、「頭がいかれた、変な」という意味です。バーコールは、

「誰からも相手にされず、頭がおかしいと思われるが、実は世の中を変えるような画期的なアイデアやプロジェクト」

つまりブレイクスルーです。

つまり
ムーンショットは目標、
ルーンショットはやり方
と言えるでしょう。

ルーンショットには以下の2種類があります。
 

◆Pタイプルーンショット

製品(Product)の驚くべきブレイクスルーです。このタイプのルーンショットに対し、最初人々は
「ものになりそうにない」「ヒットしようがない」
と思います。
ところがふたを開けると大ヒットします。そして古い製品は駆逐され、新しい製品やサービスが取って代わります。これまでのビジネスは「突然死」し、劇的な変化が起きます。
 

◆Sタイプルーンショット

戦略(Strategy)の驚くべきブレイクスルーです。特に新しい技術はなく、新しいビジネスのやり方や既存製品の新しい応用です。
このタイプのルーンショットは、市場の複雑な振る舞いに隠されてしまい、外からは変化がわかりません。いつの間にか市場を席巻したグーグルやフェイスブックなどがこれに当てはまります。
 

【フランチャイズ】
バーコールは「従来の事業をひたすら拡大する組織」をフランチャイズと呼びました。
フランチャイズでは、ルーンショットは無視されるか、実現が阻害されます。
 

持続型イノベーションと破壊型イノベーション

C.M.クリステンセンは著書『イノベーションのジレンマ』で、イノベーションに持続型イノベーションと破壊型イノベーションの2つがあると述べました。
 

◆持続型イノベーション

既存企業が行う顧客の要望に忠実に改良を組み重ねていくことです。
 

◆破壊型イノベーション

「破壊的イノベーション」には、下記の2種類があります。多くの場合は、この2種類のイノベーションが複合しています。
 

【ローエンド型破壊】
既存市場において「オーバーシューティング」に陥ったリーダー企業は、より高価格・より高機能な製品に軸足を移していきます。
これに対し新たな企業が“破壊的技術”で、低価格や使いやすさを実現して、空白になりつつあるローエンド市場に参入します。そしてローエンド市場で圧倒的なシェアを獲得します。
そこから改良を重ね、徐々により上位の市場の顧客のニーズを満たすようになり、遂にはハイエンド市場にも進出します。最終的には既存のリーダー企業は、限られた上位機種の市場へと逃避し、最後は駆逐されてしまいます。

一時、世界市場で高いシェアを誇ったテレビなど日本の家電製品は、高品質、高機能を求めていくうちに、より高機能、高価格になっていきました。そして製品の機能が顧客のニーズを超えてしまい(オーバーシュート)、韓国、中国の低価格品にローエンド市場を奪われ、最後にはハイエンド市場も失いました。
 

【新市場型破壊】
“破壊的技術”を用いた製品で、これまでとは異なる市場に参入することです。その多くは、これまで消費のない状況「無消費」に消費を起こすイノベーションです。
かつて任天堂はゲーム機市場ではプレイステーションに性能で押されていました。そこで、Wiiでは「体を動かして楽しむ」、あるいは「家庭でのフィットネス」を前面に打ち出しました。それまでゲーム機に縁がなかった女性や高齢者という新たな市場を開拓しました。
 

パラダイム破壊型イノベーション

クリステンセンの「破壊的イノベーション」は、より性能の低い製品が従来の製品の市場を奪うもので「性能をイノベーションの起点」としています。京都大学大学院 総合生存学館 山口栄一教授は、この性能による破壊とは別に、パラダイム破壊型のイノベーションについて述べています。
 

◆パラダイム破壊型イノベーション

パラダイム(paradigm)とは、特定の分野、その時代において規範となる「物の見方や捉え方」を指します。
パラダイム破壊型イノベーションとは、これまでの価値観を破壊するイノベーションのことで、技術開発を継続し、今まで科学的にできないとされてきたことをできるようにするものです。

例えば青色LEDの開発では、当時すでに技術が確立していたセレン化亜鉛結晶を使った研究はなかなか進ま見ませんでした。NTT(松岡氏)、松下電器(赤崎氏、名大へ移籍)は開発を中止し、東芝、日本電気、ソニーも最後までセレン化亜鉛結晶では青色LEDは実現できませんでした。
これに対して窒化ガリウム結晶に取組んだ赤崎氏(名大)、中村氏(日亜化学)が青色LEDの開発に成功し、窒化ガリウム結晶というパラダイム破壊を実現しました。
対して、従来の手法の延長線上で性能向上したものは「パラダイム持続型イノベーション」とも呼びます。
 

破壊的かどうかは結果論

このように数々の新製品や新ビジネスが従来のビジネスを「破壊」し、既存企業が退出しています。
しかしバーコールは

『破壊的かどうか』は、後付け、結果論に過ぎない

といいます。
 

●トランジスタ

1947年点接触型トランジスタが発明されました。トランジスタは、当時増幅器やリレースイッチの耐久性を高めるために開発されました。しかしできたものは、真空管よりはるかに高価で、増幅できる電流は真空管よりもはるかに微弱で、どう使えばいいのかわからない代物でした。当初は軍隊など限られたユーザーしかありませんでした。
ソニー(当時、東京通信工業(株))は、アメリカから高額なトランジスタの特許を購入し、自らトランジスタを製造しトランジスタラジオを実現しました。
 

●ウォルマート

サム・ウォルトンは、大都市のデパートのオーナーになるつもりでした。しかし妻の「大都市はやめて、1万人いれば十分」という意見のため、出店したのはアーカンソー州の人口3,000人の町でした。
そしてアメリカの小さな町には、数多くのビジネスチャンスがあることに気付いたのです。
 

●イケア

スウェーデンで雑貨の通信販売をしていたイングバル・カンプラードは、

通信販売の商品リストに家具を加えたところ、販売は非常に好調で、国内の家具店を脅かすほどになりました。
そこで家具店のオーナー達は、デザイナーがカンプラードと仕事をするのを禁じました。さらにカンプラードが新製品を開発するのも妨害しました。

カンプラードは仕方なく自らデザイナーを雇わざるを得なくなりました。そしてイケア独自のデザインが生まれました。

こうしてカンプラードが独自デザインの家具をつくり始めると、

家具店のオーナー達はイケアが国内の家具メーカーと取引するのを禁じました。
カンプラードは仕方なくポーランドに行き家具メーカーを探しました。そしてポーランドで製造した結果、原価が半分になったため、カンプラードはその分家具の価格も下げました。販売はさらに増加しました。

カンプラードは業界を「破壊」するつもりは全くありませんでした。生き残ろうと努力した結果、その努力が決定的な差別化につながりました。後年、カンプラードは

「スウェーデンの既存の家具店が堂々と戦いを挑んでいたら、こんなに成功できたかわからない」

と語っています。

図1 イケア創業者イングバル・カンプラード(Wikipediaより)

図1 イケア創業者イングバル・カンプラード(Wikipediaより)


 

イノベーションという言葉自体が後付けではないか

こうして様々な事例をみるとイノベーションと呼ばれるものが後付けではないかという気がしてきます。多くの企業は、事業活動において
「直面している問題」、「将来実現したい技術・製品」「満たされない顧客ニーズ」
といった課題に向き合ってきました。それが従来の技術や製品で解決できれば、特に目を引かなかったかもしれません。しかし最善の解決方法を探した結果、たまたまそれが新しい技術や製品だった場合、イノベーションと呼ばれたのではないでしょうか。

例えば自動車の燃費向上を目指すメーカーは、エンジンの燃焼効率アップや変速機の多段化・ワイドレシオ化、アイドリングストップなどの様々な改良や技術開発を行いました。(ある意味、持続的イノベーションです。) しかしトヨタ自動車は新たにプリウスでハイブリッド技術を開発しました。これはイノベーションと呼ばれました。

一方、技術的なブレイクスルーはなくても、イケアのように新たなビジネスが急速に発展し従来のビジネスを圧倒することもあります。 どの企業も企業間競争を勝ち抜くために常に新たな技術や製品・サービスに取組んでいます。その中で

たまたま大成功したものをイノベーションと呼ぶことで他のものとは違うものだと思ってしまう

のではないでしょうか。
 

なぜならイノベーションを起こした人たちは、

イノベーションを起こそうとしたわけではないからです。

ソニーの井深大氏はラジオには手を出さないと決めていました。当時の真空管式の大型ラジオは大手メーカーがすでに圧倒的に優位に立っていたからです。しかしトランジスタの技術を手にしたことで、ラジオに取り組みました。

イケアは家具の通信販売で既存企業から妨害されたため、自社でデザイナーを雇い、ポーランドのメーカーに委託したことで大きく差別化できました。

青色LEDの開発で日亜化学の中村氏は、すでに大手が取り組んでいるセレン化亜鉛結晶はたとえ成功しても勝ち目がないと考え、他がやっていない窒化ガリウム結晶に取り組みました。
 

イノベーションを生み乱す組織「ルーンショット養成所」

一方で世の中を変えた画期的なブレイクスルーの多くは、最初は誰からも相手にされず「頭がおかしい」と思われるようなアイデア「ルーンショット」から生まれました。
実は多くのルーンショットは、その奇抜さ、斬新さゆえに、多くの人から無視されて、葬られてきました。
ところがこのルーンショットを守り育てる「ルーンショット養成所」の役割を果たした組織があったのです。
 

ルーンショット養成所1「イギリス王立協会」

なぜ近代科学が中国、インド、イスラムでなくイギリスだったのでしょうか?

大英帝国の黄金期に大きな役割を果たしたのがイギリス王立協会です。この王立協会はルーンショット養成所の役割を果たし、この王立協会はロバート・ボイル、ロバート・フック、アイザック・ニュートンなど近代物理学や数学に貢献した科学者を支援しました。
当時はまだ魔術や錬金術が幅をきかせていた17世紀に、ロバート・フックなどが行っていた実験を主体とした科学的な取組を会員が共有するようにしました。これがさらに新たなアイデアを生み出す下地となったのです。
 

1687年ロバート・ボイルの助手ドニ・パパンは圧力釜を使った料理法の本を出版しました。そこに空気ポンプにピストンをつける方法がひっそりと書かれていました。それは蒸気機関の原理そのものでした。

1712年これを見たニューコメンが世界初の蒸気機関を発明しました。その後多くの人がこぞって蒸気機関に取り組みました。

ニュートンが万有引力を発見し「プリンキピア」を著すまでに、

  • 惑星の動きに関しヨハネス・ケプラーが、
  • 万有引力に関してロバート・フックが、
  • 円運動と遠心力に関してクリティアーン・ホイヘンスが

アイデアを出していました。

ニュートンは、これらの考えを「合成」した上で体系化して「プリンキピア」を著しました。

王立協会というルーンショット養成所は、こういったアーティストたちを保護し、それらのアイデアを合成する環境を提供していたのです。

図2 ドニ・パパンの蒸気機関(Wikipediaより)


 

ルーンショット養成所2「ベル電話研究所」

グラハム・ベルがベル電話会社を設立してから30年、AT&Tと改称したベル電話会社は経営危機に陥っていました。当時、遠距離の電話は信号の減衰が大きく音が小さくてろくに聞き取れませんでした。電話は近距離の通話に限定され、しかも競合の電話会社が林立していました。

1907年J・P・モルガンがAT&Tの経営権を握ると、セオドア・ヴェイルが社長に就任しました。ヴェイルは問題を解決するためには、今までにないアイデアが必要と考えました。そしてこれを実現するために、ルーンショットを隔離・保護して研究に専念するベル電話研究所を設立しました。
このヴェイルの研究所は、その後半世紀の間にトランジスタ、太陽電池、CCD、初の連続動作レーザー、UNIX OS、C言語など数々のルーンショットをを生み出しました。所属した研究者らは合計8つのノーベル賞を受賞しました。こうしてAT&Tはアメリカ最大の企業に成長しました。

図3 セオドア・ヴェイル

図3 セオドア・ヴェイル(Wikipediaより)


 

ルーンショット養成所3「科学研究開発局 (OSRD)」

1930年代MIT副学長ヴェネヴァー・ブッシュは、来るドイツとの戦争には従来にない全く新しい技術が必要だと考えていました。しかし「巨大なフランチャイズ組織」である軍では、「銃と銃剣を装備した歩兵がいれば十分」と考えていました。海軍は、戦艦の数が重要だと考えていました。
ドイツとの技術格差が広がっていくことを懸念したブッシュは、「突飛なアイデアを自由に試す組織」が必要なことを大統領のアドバイザーに提言しました。そして科学研究開発局(OSRD)を設立しました。OSRDは、19の産業技術研究所、32の学術機関と126の研究契約を締結しました。

図4 ヴェネヴァー・ブッシュ(Wikipediaより)


 

このOSRDが生み出したものが、レーダー、近接信管、水陸両用トラック(DUKW)、そして原子爆弾です。

図5 水陸両用トラック(DUKW)と近接信管(Wikipediaより)

図5 水陸両用トラック(DUKW)と近接信管(Wikipediaより)


 

◆レーダー 偶然の発見

1922年ワシントンの海軍航空基地に勤務するレオ・ヤングとホイト・テイラーは、海上での船舶の交信を改良するため、ポトマック川の両岸に送信機と受信機を置いて高周波無線の実験を行っていました。そしてポトマック川を船が通過する際、音量が倍増し、その後、一旦途切れ、また倍増することに気付きました。こうして2人はレーダーの原理を発見したのです。2人は上司にレーダーの原理の手紙を書きました。しかし上司は無視しました。

図7 レーダー原理の発見

図7 レーダー原理の発見


 

8年後レオ・ヤングは、技師ローレンス・ハイランドとともに、地上の発信器から電波を発信しました。すると上空2,400メートルを飛ぶ飛行機が検知できることを発見しました。再びレーダーの原理を確認したヤングは、提案書を提出しました。しかし軍の反応は鈍く、それから5年経って専任者がようやく1人ついただけでした。

しかしOSRD設立後、ブッシュが強力に後押ししたことでレーダーの開発は加速しました。レーダーは完成し、戦況に大きな影響を与えました。
ドイツとイギリスが航空機で対決したバトル・オブ・ブリテンでは、レーダーによりイギリスはドイツ軍機をレーダーで事前に検知できました。その結果、上空に待機した戦闘機がドイツ軍機を待ち伏せできたのです。

その後開発されたマイクロ波レーダーは航空機に搭載できるようになりました。しかもこのレーダーは潜水艦の潜望鏡まで検知できました。

開戦初期にドイツのUボートは猛威を振るいました。イギリスに物資を運ぶ輸送船はことごとく沈められました。これをレーダーは変えました。
マイクロ波レーダーによりUボートを航空機から発見し攻撃できるようになりました。1943年5月にはドイツは1ヶ月で41隻のUボートを喪失しました。そしてドイツはUボートによる通商破壊を断念しました。

OSRDが開発した近接信管は、目標に命中しなくても目標の15メートル以内に近づくだけで爆発しました。これは砲撃の効果を7倍に高めました。さらに近接信管は航空機に対する防空射撃にも飛躍的に効果を高めました。

ルーンショットを受け入れようとしない軍

ところが巨大なフランチャイズ組織の軍は、こうしたルーンショットを受け入れようとしません。

近接信管に全く関心を示さない陸軍に対し、ブッシュはヨーロッパの戦線まで行き、参謀長に直言しました。陸軍がレーダーに関心を持たなかったため、ブッシュは陸軍長官スティムソンに直接電話もしました。

一方でブッシュは、ルーンショットを確実に現場に移転するために、開発チームに対し現場からのフィードバックを重視させました。初期の航空機用レーダーが使われなかった時、パイロットに「なぜ使わないのか」開発チームに説明させました。そして初期のレーダーは、戦闘中に扱うには操作が複雑すぎることを開発チームに納得させ、改良させました。
 

ルーンショット養成所4「アメリカ優位の礎となった(DARPA)」

数々の画期的な兵器を生み出したOSRDですが、ブッシュの描いていたOSRDを国立研究所にするという構想は、大戦終了後トルーマン大統領に否定されてしまいました。
OSRDは解体されブッシュも退きました。アメリカは基礎研究を欧州など他国に依存するようになりました。

その12年後、アメリカに衝撃が走ります。

1957年ソ連が衛星スプートニク1号の打ち上げに成功したのです。新たに国防長官に就任したニール・マッケロイ(元P&GのCEO)は、斬新なアイデアに資金を出す国直属の組織が必要なことを当時のアイゼンハワー大統領に強く提案しました。この提案は大統領に承認され、マッケロイはかつてブッシュと共に仕事をした人たちからアドバスを受け、高等研究開発局(ARPA、その後DARPAに改称)を設立しました。ブッシュの描いた構想は実現したのです。

DARPAは、数多くの風変わりなプロジェクトに資金を提供し、失敗の山を築きました。しかしその中からインターネットやGPS、音声認識(Siri)など多くのイノベーションが生まれたのです。そしてこれが現在のIT先進国アメリカの礎となったのです。
 

参考文献

「LOON SHOTS」 サフィ・バーコール著 日経BP

 

 

経営コラム ものづくりの未来と経営

人工知能、フィンテック、5G、技術の進歩は加速しています。また先進国の少子高齢化、格差の拡大と資源争奪など、私たちを取り巻く社会も変化しています。そのような中

ものづくりはどのように変わっていくのでしょうか?

未来の組織や経営は何が求められるのでしょうか?

経営コラム「ものづくりの未来と経営」は、こういった課題に対するヒントになるコラムです。

こちらにご登録いただきますと、更新情報のメルマガをお送りします。
(登録いただいたメールアドレスは、メルマガ以外には使用しませんので、ご安心ください。)

経営コラムのバックナンバーはこちらをご参照ください。
 

中小企業でもできる簡単な原価計算のやり方

 
製造原価、アワーレートを決算書から計算する独自の手法です。中小企業も簡単に個々の製品の原価が計算できます。以下の書籍、セミナーで紹介しています。

書籍「中小企業・小規模企業のための個別製造原価の手引書」

中小企業の現場の実務に沿ったわかりやすい個別製品の原価の手引書です。

基本的な計算方法を解説した【基礎編】と、自動化、外段取化の原価や見えない損失の計算など現場の課題を原価で解説した【実践編】があります。

ご購入方法

中小企業・小規模企業のための個別製造原価の手引書 【基礎編】

中小企業・小規模企業のための
個別製造原価の手引書 【基礎編】
価格 ¥2,000 + 消費税(¥200)+送料

中小企業・小規模企業のための
個別製造原価の手引書 【実践編】
価格 ¥3,000 + 消費税(¥300)+送料
 

ご購入及び詳細はこちらをご参照願います。
 

書籍「中小製造業の『製造原価と見積価格への疑問』にすべて答えます!」日刊工業新聞社

書籍「中小製造業の『製造原価と見積価格への疑問』にすべて答えます!」
普段疑問に思っている間接費・販管費やアワーレートなど原価と見積について、分かりやすく書きました。会計の知識がなくてもすらすら読める本です。原価管理や経理の方にもお勧めします。

こちら(アマゾン)から購入できます。
 
 

 

セミナー

原価計算と見積、価格交渉のセミナーを行っています。

会場開催はこちらからお願いします。

オンライン開催はこちらからお願いします。
 

 

簡単、低価格の原価計算システム

 

数人の会社から使える個別原価計算システム「利益まっくす」

「この製品は、本当はいくらでできているだろうか?」

多くの経営者の疑問です。「利益まっくす」は中小企業が簡単に個別原価を計算できるて価格のシステムです。

設備・現場のアワーレートの違いが容易に計算できます。
間接部門や工場の間接費用も適切に分配されます。

クラウド型でインストール不要、1ライセンスで複数のPCで使えます。

利益まっくすは長年製造業をコンサルティングしてきた当社が製造業の収益改善のために開発したシステムです。

ご関心のある方はこちらからお願いします。詳しい資料を無料でお送りします。

 

]]>
https://ilink-corp.co.jp/8539.html/feed 0
カオス理論が常識を覆す~バブルは再発し、野生動物は激減する、難解なカオス理論を易しく解説~ https://ilink-corp.co.jp/8086.html https://ilink-corp.co.jp/8086.html#respond Fri, 21 Oct 2022 13:46:08 +0000 https://ilink-corp.co.jp/?p=8086 No related posts. ]]> 金融工学の理論上、バブルは起きないことになっています。ではなぜ起きないはずのバブルが起きるのでしょうか?
あるいは、近年のカツオやサンマの不漁が話題になっていますが、これは中国など他国の乱獲が原因なのでしょうか?
私たちの身近に起きる問題について、様々な原因が報道されています。

しかし、問題を解明する理論の前提が違っていたら、どうなるのでしょうか?

例えば、かつては地球を中心として太陽や惑星が回っていると考えられていました(天動説)。しかし天動説では惑星の動きを正確に表すことができませんでした。

そして現在は地球が太陽の周りを回っている地動説に置き換わりました。

同様に私たちの身近にある様々な現象は、天動説のような古い考え方で捉えようとしているのかもしれません。
 

1960年代に生まれ、1990年代以降注目されている「カオス理論」があります。

カオス理論では経済や自然現象に対し、それまで正しいとされてきた前提条件が違っていることが分かってきました。

カオス理論に照らすと世界はどのように見えるのでしょうか。
 

近代科学の成立と無視された世界

17世紀以前、世界は神話に支配されていました。
様々な物理現象は神によるものでした。

しかし17世紀にはいるとニュートンをはじめとする多くの科学者が様々な原理や法則を発見し、近代科学は大きく進歩しました。
こうして世界は神による神秘的なものから、様々な理論や数式で表すことができる時計仕掛けの世界に変わったのです。
 

時計仕掛けの世界観と自然界への応用

ニュートンの功績は、物理上の様々な運動法則を解き明かしたことと、微分・積分を確立したことです。
これにより物体の衝突から振り子の振動、天体の動きを数式で表すことができるようになりました。つまり様々な物理現象の結果が計算できるようになったのです。

20世紀にアインシュタインが相対性理論を確立するまで、ニュートンの物理学が唯一でした。今でもほとんどの物理現象はニュートンの理論で解くことができます。今の高校生や大学生が勉強しているのもニュートンの理論なのです。

このニュートンの理論は、それまでの神話から始まる神秘に満ちた世界観を、神秘性の全くない時計仕掛けの世界に変えました。
 

そしてニュートン(とライプニッツら)の打ち立てた微分・積分は、天体の運動以外にも様々な物理現象を微分方程式と数式で表すことを可能にしました。こうしてニュートンが開いた科学の扉から、多くの科学者が様々な自然現象に微分・積分を応用しました。

イギリスの数学者ブルック・テイラーは、微分方程式を使って振動が正弦波であることを発見しました。さらにフランスの数学者ジャン・ル・ロン・ダランベールは2つ以上の変数の現象を解く偏微分方程式を考えました。そしてこれを使って2つ以上の振動の重なりを解きました。
 

ジョゼフ・ルイ・ラグランジュはこの振動理論を音響学に発展させ、レオンハルト・オイラーはニュートンの理論を応用して水などの液体(流体)の流れを解き明かしました。(二人は18世紀最大の数学者と呼ばれています。)

ジョゼフ・フーリエは熱の流れに微分方程式を応用しました。ピエール・シモン・ド・ラプラスやシメオン・ドゥニ・ポアソンは、構造物(弾性体)の変形を解き明かしました。

こうした科学者の自然現象に対する解析と理解は急速に深まり、それを元に蒸気機関、発電所、モーターなどの技術は急速に進歩し、産業は大いに発展しました。
 

無視された世界

一方様々な物理現象を微分方程式で表すことができても、そこからその現象の結果を定量的に把握するには、その微分方程式を解いて数値解を出さなければなりません。
物理現象を微分方程式で表すことと、その微分方程式を解くことは別なのです。
例えば、微分方程式とは以下の式です
式1

当時、微分方程式を解いて数値解を出すには、この微分方程式を展開して(解析的に)解かなければなりませんでした。これは今でも工学部の学生が試験でやっていることです。
一方、今では解析的に解かなくても、コンピューターを使って微分方程式の数値解を計算することができます。
 

しかし当時、例え自然現象を微分方程式で表すことができても、その微分方程式が複雑で解析的に解けなければ、その理論は現実には使えませんでした。そこでこのような場合、解析的に解けるように微分方程式の前提条件を変えました。

例えば物体の衝突を計算する場合、衝突する物体は

  • 弾性変形や塑性変形が一切ない完全な剛体で
  • 衝突の際に摩擦の影響も全くない

という条件です。
 

従ってパチンコ玉のような硬い物体が衝突した後の軌跡は、ニュートン力学では高い精度で計算できます。(それでも弾性変形が皆無ではないため誤差は生じます。) しかし車と車が衝突した場合、衝突後の2台の運動はニュートン力学では解けません。

また物体の衝突自体も物体が2つの場合はニュートン力学で計算できますが、3つ以上の場合は計算できません。

図1 2つの衝突は計算できる

図1 2つの衝突は計算できる

 

天体のような互いに引力が作用する場合も同様で、これは「三体問題」として現在でも物理学の大きなテーマとなっています。
 

また当時は微分方程式を解析的に解くには、微分方程式が「線形」である必要がありました。微分方程式の線形と非線形の違いは以下のようなものです。

線形微分方程式の例 以下のバネの運動方程式、非線形微分方程式の例 以下の振り子の運動方程式
 

微分方程式が線形であれば、解はひとつだけ存在します。これに対して非線形微分方程式では、解が存在するかどうか、また解が存在してもその解が一つかどうかわかりません。

そこで当時の科学者は、自然現象を少々無理をしてでも線形微分方程式で表しました。しかし実際は自然界の現象の多くは、正確に表すためには非線形微分方程式が必要でした。
 

注記) 微分方程式の数値解
多くの数学者が微分方程式の解法を探求しましたが、手計算で解析的に解ける微分方程式は限界がありました。そこでコンピューターを使って数値解を求める方法が研究され、コンピューターの進歩と共に発展しました。数値解を求める方法にはルンゲ・クッタ法、線形多段法、オイラー法などがあり、今でも多くの解法が研究されています。この方法であれば非線形微分方程式も数値解が得られます。
 

確率論とランダムさとは?

実は天体の運動は軌跡が一つしかありません。そのためニュートン力学で表すことができます。
では常に起きるとは限らないような物理現象は、どうやって数学で表すのでしょうか。
 

確率論の確立

決まって起きるとは限らない現象、その代表がルーレットやサイコロ、つまりギャンブルです。
このギャンブルを16世紀から17世紀にかけてカルダーノ、パスカル、フェルマー、ホイヘンスらが数学の一分野として研究しました。

そして、その結果「確率論」が生まれました。
 

イタリアの数学者カルダーノは、賭博師でもありました。彼は1560年代『さいころあそびについて』で初めて確率論を系統的に論じました。

ラプラスは1814年に『確率の哲学的試論』でそれまでの様々な確率論を統合し、古典的確率論にまとめました。さらにベルヌーイは完全にバランスの取れたコインを投げた場合、回数が多くなれば表と裏の確率が半々になることを「大数の法則」で証明しました。

試行回数が非常に多い場合、その分布はつりがね型の「ベル・カーブ」になります。このベル・カーブは1733年アブラーム・ド・モアブルによって定義されました。

カール・フリードリッヒ・ガウスは、誤差の多い測定結果の修正に最小二乗法を用いました。そして真の値を計算する際に、誤差の分布を正規分布として計算しました。

1812年にピエール・シモン・ラプラスは最小二乗法、帰納的確率論、仮説の検証といった確率や統計の基礎を統合しました。「正規分布」という言葉はチャールズ・サンダース・パース、フランシス・ゴルトン、ヴィルヘルム・レキシスの3人によって1875年頃に導入されました。
 

正規分布は以下の式で表されます。図2に正規分布曲線を、表1に正規分布における信頼区間と誤差を示します。

信頼区間と誤差の理論は、今でも品質管理やシステムの信頼性の基本として広く用いられています。
 

例えば、目標値に対し測定結果の標準偏差が0.01ミリでした。

このとき信頼区間1σ、つまり±0.01ミリの誤差は31.7%
測定結果の31.7%は±0.01ミリの範囲外、つまり不合格になります。

このとき信頼区間3σ、つまり±0.03ミリの誤差は0.27%
測定結果の0.27%は±0.03ミリの範囲外、つまり不合格になります。

このとき信頼区間5σ、つまり±0.05ミリの誤差は0.000057%
測定結果の0.000057%は±0.05ミリの範囲外、つまり不合格になります。
 

このようにして品質管理では製品の信頼度を評価しています。そして高度な信頼性が求められる製品では、0.000057%の誤差でさえ問題になるのです。

式2

図2 正規分布曲線

図2 正規分布曲線

表1 信頼区間と誤差(σは標準偏差)

信頼区間 発生確率(%) 誤差(%)
68.2689492 31.7310508
95.4499736 4.5500264
99.7300204 0.2699796
99.993666 0.006334
99.9999426697 0.0000573303

 

ランダムさとは?

確率論の対象となる、このように必ずしも結果が決まっていない現象をランダム(random)といいます。これは以下のように定義されます。
「事象の発生に法則性(規則性)がなく、予測が不可能(英語版)な状態で、無作為性ともいう」

ランダムの例としてコイン投げやサイコロがあります。
実際は完全なサイコロやコイン投げは存在しません。そのため必ず結果に偏りが出ます。ただし物理では、予測が不可能であればランダムとします。
 

実際のカジノのルーレットも完全にランダムではありません。

1964年リチャード・ヤレキ氏は、記録係を8人雇い、ヨーロッパの何か所かのカジノに行かせました。そしてルーレットの出た数字をひたすら記録させました。そしてそれぞれのルーレットのくせを完全に把握すると、3,000万円の資金を借りてカジノに出かけました。

図3 ルーレットのくせを見抜くと…

図3 ルーレットのくせを見抜くと…


 

ヤレキ氏の荒稼ぎは半年続き、その間に7億4,000万円を手にしました。
カジノ側も荒稼ぎをするヤレキ氏に気づき、毎日ルーレット盤を変えました。しかしヤレキ氏はルーレット盤の僅かなキズや変色も記録しておいたので目当ての台を見つけました。
 

この一見ランダムな事象も長いスパンではあるパターン(傾向)がみられます。ひょっとするはこれがギャンブルの「運」なのかもしれません。
 

1950年フェラーはコイン投げを1万回行い、表と裏の出現頻度にパターンがあることを発見しました。
単純なコイン投げでも回数が多いと長期的なパターンがみられるのです。
 

数学者のベノワ・B・マンデルブロ氏は、このランダムさには複数の「状態」又は型があると言います。

  • マイルド型
  • コイン投げなど、平均値から一定の範囲内でゆらぐものです。自然界でもこれが正常な状態とされてきました

  • ワイルド型
  • 極めて不規則に変化し、予測が困難

  • スロー型
  • マイルド型とワイルド型の中間

 

予想以上にランダム

19世紀の数学者コーシーは、ガウスとは異なった誤差理論(コーシー曲線)を考えました。

目隠しをしたアーチェリー選手の撃った結果は、時には外れ方が半端なく大きくなります。そして誤差は正規分布になりません。

たった1回でも大きく外すと平均値が大きく書き換わるため平均値は一定に収束せず、標準偏差は無限大になります。
 

ガウスは大きな変化はたくさんの小さな変化の結果と考えました。しかしコーシーは大きな変化は意外に高い確率で発生すると考えたのです。

式3

図4 正規分布とコーシーの分布曲線

図4 正規分布とコーシーの分布曲線


 

図4で、最も背の低い曲線が正規分布、最も背が高い曲線がコーシー分布の曲線です。

その中間の高さの曲線はマンデルブロ氏が調べた実際の市場における綿花の価格の変動の分布です。

当時は、多くの学者がガウスの理論はシンプルで現実的であると考えました。しかしマンデルブロ氏はむしろコーシーの理論の方が自然に見えると言います。
 

金融工学の誕生とその土台

確率論がギャンブルを出発点に発達しました。逆にギャンブル要素の高い金融市場(株式市場)に確率論を持ち込んだ人たちがいました。
 

株式市場は確率的?

フランスの数学者ルイ・バシュリエは、株式や債券の価格の変動がランダムウォークであると考えました。

この価格の変動に確率論を適用して1900年に論文「投機の理論」を書きました。ランダムウォークとは価格動向が確率的に等しく上下する(ボラティリティ)場合の振る舞いです。このランダムウォークの分布は正規分布で表現できます。

さらにバシュリエは債券価格の値動きに微粒子の不規則な動き「ブラウン運動」の理論を応用しました。
 

当時フランスでは株式以外にオプションやワラント債などが活発に取引されていました。バシュリエは実際にオプション取引や先物取引の価格付けに自分の理論を当てはめてみたところ、利益を上げた人の割合はバシュリエの理論と一致しました。

このときバシュリエは以下の2つを仮定しました。

  • 価格の変化は過去の変化の影響を受けない
  • 価格の変化は正規分布に従う

これを前提としてバシュリエのモデルに従って、逆の方向の値動きをする株式や債券を組み合わせれば、リスクに応じた収益性の高い金融商品の組合せ(ポートフォリオ)をつくることができます。これは現代の金融商品(例えば投資信託)そのものです。
 

しかし、不幸なことにバシュリエは生まれたのが早すぎました。生前は全く評価されませんでしたが、彼の理論は彼の死後、1950年代になってハリー・マーコヴィッツ、ウイリアム・シャープ、ポール・サミュエルソン、ユージン・ファーマらが取り上げました。
より洗練され高度化し、これが現代のファイナンス理論の基礎となりました。

ファイナンス理論は次の「効率的市場仮説」を前提としています。

  • 常に多数の投資家が収益の安全性を分析・評価している
  • 新しいニュースは常に他のニュースと独立してランダムに市場に届く
  • 株価は新しいニュースによって即座に調整される
  • 株価は常に全ての情報を反映している

現実はこの前提を完全に満たしておらず、金融理論は現実を一部無視した主観的な面があります。

一方、この理論はシンプルで使いやすく、大半の市場にはよく適合します。そのため、現在も金融業界で広く用いられています。

ところが稀に、現実はこの前提から外れ、大きな変動が発生します。
 

マーコヴィッツとCAPM

シカゴ大学のマーコヴィッツは、リスクとリターンの関係を表す数式に確率論を用いました。これを元に現代ポートフォリオ理論を考え現代の金融工学を確立しました。

また企業の株式のパフォーマンスを定量化するためにCAPM(資本資産価格モデル、Capital Asset Pricing Model)を考案しました。このCAPMは今も企業が投資先としての自社の価値を示すのに使用しています。
 

CAPMでは、ある株式に期待されるリターンは個別の株式が持つβ値とリスクフリー・レートから計算します。
E(r) = rf + β(rM-rf)
E(r): 任意の株式の期待リターン
rf: リスクフリー・レート(実際は国債の利回り)
β: 任意の株式のβ値
rM:マーケットが期待するリターン

CAPMから計算した株式投資期待収益率E(r)は、企業側から見れば株主コストです。
 

この株主コストと負債コストを加重平均すると企業が調達している資本のコスト(WACC、加重平均資本コスト)が計算できます。 このWACCで個別案件が生み出す将来のフリー・キャッシュフローを割り引けば、個別の投資案件の採算性が評価できます。

このβ値は企業の株式が市場全体の株価の動きよりも大きく変動するか、小さく変動するかを表します。つまりその株式のリスクを示します。大きなリターンを求める投資家はβの高い株式を狙い、リスクを嫌う投資家はβの低い株式を選択します。

図5 株式のねらい目は…?

図5 株式のねらい目は…?


 

1960年ウイリアム・シャープはマーコヴィッツに
「効率的市場仮説が正しいのであれば、効率的なポートフォリオは一つだけになるのではないか」
と尋ねたところ、彼の答えはイエスでした。これを実現したのがインデックス・ファンドです。
 

ブラック=ショールズの公式

デリバティブなどオプションの価格は、すでにバシュリエが1900年の論文でオプションの評価式を考案しました。しかしオプションの価格評価の中で、リスクの市場価格を明示できなかったため実用性は乏しいままでした。

1965年にハーバード大学からアーサー・D・リトルに移ったフィッシャー・ブラックは、ワラント債の評価式を研究しました。そして1969年にワラントの評価式を導出しました。しかしブラックは方程式を解くことができませんでした。
 

ところが同じ1969年マサチューセッツ工科大学(MIT)に移籍すると、ブラックはこれが熱伝導方程式の一種であることには気付きました。そしてMITのマイロン・ショールズと共に評価式を完成させました。そして実際にこの評価式を使って割安なワラント債を買ってみたところ、この評価式はオプションの評価に十分使えることが分かりました。

そして1970年オプションの評価式としてこのブラック=ショールズの公式を発表しました。これにより市場で取引されていたオプションやワラント債などデリバティブの適正な価格が算出できるようになりました。
 

ブラックショールズの偏微分方程式
 

S : 原資産である株式価格
N(α) : 正規分布に従う確率変数がα以下の値をとる確率、すなわち正規分布の累積分布関数
K : コール・オプションの行使価格
t : 満期時点(年単位)
r : オプションの満期に対応する無リスク金利(連続複利ベース)
e-rt : 時点tで発生するキャッシュ・フローを、連続複利金利rで現在価値に引き直すための割引係数(ディスカウント・ファクター)
σ : ボラティリティ(原資産の収益率の標準偏差)
 

【背景】

1950年代、60年代はアメリカの黄金時代でした。企業は年々成長し株価は多くの銘柄で値上がりが続きましたしかし1971年ドルは変動相場制に移行し、その後到来したオイルショックの影響もあり、アメリカは長い不況に見舞われました。企業の成長も鈍化しました。一方1973年にはシカゴにオプション取引所が開設され、株式以外の金融商品の取引が活発になりました。そこでオプション価格の算定のニーズが高まりました。

1993年にショールズはロバート・マートンと共にヘッジファンド「ロングターム・キャピタル・マネジメント(LTCM)」に参画しました。LTCMは当初4年間に40%を超える平均年間利回りという驚異的な成績を上げました。そして各国の金融機関の資金など合わせて1000億ドルを運用しました。

しかしアジア通貨危機によるロシア債券価格の急落により経営破綻しました。ブラック=ショールズの公式にはアジア通貨危機は盛り込まれていなかったようです。
 

経済学の流行

金融工学や経済学に対し、マンデルブロ氏は「伝統的な金融工学は以下の仮定に基づいている」と言います。

  1. 人間は合理的に考え、豊かになることだけを目的としている
  2. 《理論上は》 合理的に意思決定する
    《現実は》 意思決定は時には非合理(これは行動経済学で明かされた)

  3. 投資家の行うことは全て似たり寄ったり
  4. 《理論上は》 同じように行動する
    《現実は》 投資家の行動は同じではない

  5. 株式や債券の価格が急変することはない
  6. 《理論上は》 少しずつ変化する
    《現実は》 時には激しく変化する

 

金融工学が価格の変動をブラウン運動とみなして価格を算定するためには、以下の3つの理論上の仮定があります。

  • 過去の価格は現在の価格に影響しない
  • 価格の変動は統計的には定常性がある
  • 価格の変動は正規分布に従う

しかし現実はそれほど単純ではありません。
 

ところが多くの経済学者は、単純なモデルを使ってきれいな結果を出すことを重視しています。そしてモデルが現実に合わない時は「アノマリー」(異常)とし、モデルを見直そうとはしません。

  1. 金融モデルは市場の動きを正確に予想できるか
  2. 現代ポートフォリオ理論に従えば安全で利益を出せる投資戦略が立てられるか
  3. 金融アナリストやCFOはCAPMを利用して正しい判断をしているか

 

「この3つ問いの答えがイエスならモデルの妥当性に文句をつけるべきではない」
とアメリカの経済学者ミルトン・フリードマンは述べています。

稀に起こる突発的な変化を「アノマリー」として除外すれば金融工学のモデルは実用的で現実に十分適合します。

ただし、それは「突発的な変化による被害が自分に及ばない時」に限ります。
 

カオス理論が明かす想定外の変化

カオスとは「混沌」を意味する英語で、語源はギリシャ語のkhaosです。

これは宇宙が成立する以前の秩序なき状態を意味します。
 

カオス理論のカオスは、数学用語です。これは「決定論的システムにおける確率論的なふるまい」を意味します。

これはどういうことでしょうか?
 

カオス理論とフラクタル

フランスの数学者アンリ・ポアンカレは、
微分方程式の解が一つだけ決まるということは、その運動が何度も繰り返す、つまり周期性を持っている
ということを発見しました。
 

トポロジー(位相幾何学)

トポロジーは数学の一分野です。
何らかの形(又は「空間」)を曲げたり伸ばしたり(切ったり貼ったりはしない)しても保たれる性質のことです。このトポロジーは、空間、次元、変換といった概念の研究から生まれました。

オイラーの多面体公式が知られ、20世紀中頃には数学の著名な一分野になりました。

図6 トポロジー(位相幾何学)

図6 トポロジー(位相幾何学)


 

位相空間の中でひとつの点が閉曲線に従って運動すれば、その点は同じ運動を永久に繰り返します。

図7 振り子の位相空間線図

図7 振り子の位相空間線図


 

図7は理想化された線形運動である振り子の位相空間線図です。振り子の振動は円を描きます。この円の大きさは、初期条件によって変わります。

実際の振り子の運動の位相空間線図は非線形のため、理想化された線形運動のものとは大きく異なります。
 

ポアンカレ断面

微分方程式の解が一つだけ決まる場合、その運動は周期性があります。その場合、曲線は必ず出発点に戻ってきます。

ポアンカレは、位相空間の中で、周期運動する軌跡が出発点と同じ位置に戻ってくる断面をポアンカレ断面と呼びました。つまりポアンカレ断面があれば、その運動方程式は周期解が必ず存在するということです。

図8 ポアンカレ断面

図8 ポアンカレ断面


 

カオス理論

決定論とは
「初期値を与えると必然的に未来での振る舞いが与えられる」
ことです。

決定論的なふるまいをする事象が非線形の場合、初期値がわずかに異なっただけで予想できない不規則な現象が起きます。
これをカオスと呼びます。

図9 カオス理論

図9 カオス理論


 

ある事象がカオスかどうかの判定はフラクタル次元というものを使用します。

フラクタルは、カオスの逆プロセスのことです。そしてある事象のフラクタル次元が「非整数」であればカオスです。
 

例えば生物の数の増加を示す微分方程式の解は、最初急激に増加した後、ある値に収束します。

しかし実際の生物の増加は、連続的でなく離散的です。そこでこの微分方程式を差分方程式に変換します。すると解は、定常状態から周期状態、さらに不規則な状態へ変化を続けます。
これがカオスです。
 

ストレンジ・アトラクター

アトラクターとは「何かを引きつけたり、吸い寄せたりする」という意味です。
カオス軌道を位相空間にプロットすると不思議な形になります。ループやらせんが合流せず、決して交わりません。これをストレンジ・アトラクターと呼びます。

ストレンジ・アトラクターは無限の細部構造を持っています。その一部を拡大すると同じ様な細部構造が現れます。つまり自己相似性質があります。(フラクタル)

図10 ストレンジ・アトラクター (Wikipediaより)

図10 ストレンジ・アトラクター (Wikipediaより)


 

バタフライ効果

バタフライ効果とは、力学系のわずかな変化により、その後の系の状態が大きく異なってしまうことです。

気象学者のエドワード・ローレンツの
「蝶がはばたく程度の非常に小さな撹乱でも遠くの場所の気象に影響を与えるか?」
という問いからバタフライ効果と呼ばれるようになりました。

ローレンツの研究では観測誤差をゼロにしない限り正確な長期予測は困難という結論に達しました。

図11 初期値鋭敏性(バタフライ効果)の例

図11 初期値鋭敏性(バタフライ効果)の例


 

ローレンツ方程式における初期値鋭敏性(バタフライ効果)の例。横軸は時間、縦軸はある変数の変化を示す。水色は初期値 1.001、紫は 1.0001、朱色は 1.00001 で、最初のころはほとんど同じ動きだが、ある程度時間が過ぎたところで全く違った動きになる。(Wikipediaより)
 

バタフライ効果の例
一方バタフライ効果は、ローレンツが研究・発表した3元連立非線形常微分方程式(ローレンツ方程式)が生み出すストレンジ・アトラクターの形状に由来するという意見もあります。
式

図12 ローレンツ方程式とロレンツ・アトラクタ (Wikipediaより)

図12 ローレンツ方程式とロレンツ・アトラクタ (Wikipediaより)


 

フラクタル

フランスの数学者ブノワ・マンデルブロが提唱した幾何学の概念です。図形の部分と全体が自己相似になっているものを指します。
 

具体的な例に海岸線の形があります。一般的の地形は複雑な図形でも拡大すれば滑らかな形状になりますが、海岸線はどれだけ拡大しても同じように複雑な形状が現れます。

そのため海岸線の長さは、小さい物差しで測れば測るほど微細な凹凸が測定されて長くなります。つまり図形の長さは無限大になってしまい、無限の精度を要求されれば測ることはできません(海岸線のパラドックス)。

フラクタル次元はこの様な図形を評価するためのものです。
 

比較的滑らかな海岸線のフラクタル次元は線の次元1に近く、リアス式海岸のような複雑な海岸線のフラクタル次元はより大きな値になります。なお、実際の海岸線のフラクタル次元は1.1 – 1.4程度とされています。以下はフラクタル図形の例です。これらの図形はすべて数式が表されています。

図13 フラクタルの例 マンデルブロ集合 (Wikipediaより)

図13 フラクタルの例 マンデルブロ集合 (Wikipediaより)


 

自然界の不均衡

生態学のA・J・ニコルソンはアオバエの個体群の大きさを研究しました。
容器の中でアオバエを繁殖させると、1万匹まで増えて容器は一杯になります。個体数は急激に減少します。

そしてある程度減少すると空間に余裕ができ、個体数は再び増加します。
 

このサイクルは38日で繰り返されますが、前と同じになることはなく、周期的に揺らぎます。
伝染病の流行もカオス的なものが見られました。イングランドとウェールズの風疹患者の時系列(1948-1966年)での増減もカオスとしてモデル化できました。
 

カオス理論で品質を改善

1994年SRAMA(バネ研究製造協会)のレン・レイノルズは、バネの品質を安定させるには素材の加工性が重要だと考えました。

そこでバネのテストサンプルをつくり、出来上がったバネのピッチを測定しました。この測定データが時系列に変化することに着目して、カオス理論のリュエル・ターケンスの位相空間再構成を使ってアトラクターを図式化しました。

このアトラクターには、巻取り性の良い線材とそうでない線材の違いをはっきりと示しました。
 

そこで新たに補助金を使ってSRAMAとウォーリック大学数学研究所は共同でFRACMATテストマシンを開発しました。

このテストマシンは、コンピューターによってデータを統計分析、およびカオス理論分析を行い、弾性/摩擦線の連続変動を定量化しました。

これによりワイヤー製造者は高品質のワイヤーを確実に顧客に提供できました。スプリングメーカーは、一貫性のないワイヤーを排除したことでセットアップの時間が短縮されました。
 

想定外に戸惑わないために

近代科学の幕開けは、ニュートンによって世界をシンプルな数学で表したことです。
しかしその過程で複雑な自然現象を解析的に解くために、現実から乖離したモデルに修正しなければなりませんでした。

この前提条件に気づかずに複雑なシステムを構成すると、自然界本来の姿がモデルと違った姿を現した時、モデルは瓦解し、私たちは戸惑います。

「想定外!」、これが原因かもしれません。

 

もっと安全が必要

マンデルブロ氏は、金融工学が前提となっている正規分布にも疑問を持っています。
そして実際に正規分布でないものはとても多く存在します。

図14 日本の世帯の所得分布

図14 日本の世帯の所得分布


 

イタリアの経済学者パレートはスイス、ドイツ、イギリスなど様々な国の税金の記録などを調べ、所得の分布をグラフ化しました。

驚くべきことにどのデータも偏っていて正規分布ではありませんでした。図15は日本の世帯ごとの所得分布です。
 

いつの時代も富は一部の特権層に集中していて、最も多い中間層は上に上がる可能性もあれば、最下層に落ちる可能性もあります。そして一定の最下層は劣悪な環境に置かれます。これは正規分布でなくべき乗分布です。その結果、所得の平均値はわれわれの実感とは乖離しています。
 

長期にわたる価格変動のデータとして、マンデルブロはアメリカの綿花の価格に注目し、100年分のデータを分析しました。その結果、価格のゆらぎ(ボラリティ)はバシュリエの理論とは大きく異なっていました。

データを増やすと標準偏差は大きくなりました。つまり正規分布よりも大きなゆらぎがあったのです。

そこで対数でプロットすると直線状になりました。つまりこれもべき乗分布でした。
また価格の日次、月次、年次の変化をプロットするとか、どれも似ていました。つまり大きな変動が発生する割合はどの時間スケールでも同じでした。このような変化はフラクタル的、つまりカオス的でした。
 

1906年ハロルド・エドウィン・ハーストはナイル川の水不足に対処するために過去の洪水の記録を調べました。そして、どのくらいの容量のダムが必要か調査しました。

調査の結果、洪水と干ばつはランダムに起きるのでなく、洪水が起きれば翌年も洪水が起きる「長期記憶性」がありました。ハーストは他の河川のデータも調べて、どの河川にもある公式が当てはまることを発見しました。その結果、変動の幅は、時間の平方根(0.5乗)で広がるのでなく、3/4乗(0.75乗)で広がりました。

図15 洪水にも公式が当てはまる

図15 洪水にも公式が当てはまる


 

これをハーストは自然の本質的な性質と断定しました。
 

マンデルブロ氏の金融への提言

マンデルブロ氏は、市場価格は乱高下するものと考え、以下のように提言しています。

  • 金融市場の価格は正規分布でなく、ワイルド型で変動する乱流であり、変動は集中し不連続で急激に変化する。変化が大きければ市場のリスクは極めて高くなる。
  • 市場が乱流のため、既存の金融理論(正規分布)では起こるはずのないリスクが現実には起こる。従ってどの株式に投資するかよりも、株式、債券、現金にどのように配分するかの方が重要。
  • 特に市場のタイミングは重要。巨額の利益と損失は極めて短時間に起きるため、「すぐに買って、すぐに売る」ことが良い結果を生む。
  • 価格は不連続にジャンプし、それがリスクをより高くする。些細な情報で投資家が行動するとそれが大きな変動をもたらす(バタフライ効果)。そのため価格は不連続に大きく変動する。
  • 市場における価値は限定された価値。経済アナリストは企業の年次報告書から企業の価値を推定し、あるいはそれぞれの国のインフレ率や金利から為替レートを推測する。しかしワイルドに価格が変動するものの価値を算出できるだろうか。

実は固有の価値の根拠はありません。それなのにあたかも価値が算定できるかのような取組は、多くの問題を抱えることとなります。
 

自然界の予測不可能性

金融工学では、前提条件が現実と合ってなく、前提条件を正規分布と仮定したため、実際の価格の変動はもっと大きくなります。さらに価格の変動は長期記憶性があるため、長いスパンで増加や減少が続きます。そしてこれがバブルを引き起こします。
 

これを自然界に当てはめて考えると、我々が解き明かしたと思っていた自然現象、例えば、
音響、振動、運動、流体、物体の変形なども、現実を無理に線形微分方程式に置き換えたものが多いことに気付かされます。しかし実際の自然現象は非線形が多くあります。つまり使っているモデルが現実に合いません。

こういった非線形の問題を解決するアプローチとしてカオス理論は今後有望です。

 

特に長い期間の変動には長期記憶性があるため、正規分布モデルは不十分です。十分に安全を確保するならば、堤防はもっと高く、ダムの水はもっと多く、防潮堤はもっと高くしなければなりません。また例え解くことができた線形微分方程式でも、初期条件のわずかな変動により結果が大きく変わることがあります。
 

工学でも誤差の解析は正規分布を前提としています。では、その前提条件は本当に合っているのでしょうか。分布が異なれば、結果は違うものとなります。

長期的に堅牢なシステムをつくるには

  • 長期スパンでの変動を考慮
  • 僅かな初期条件の違いによる結果の影響を考慮
  • 正規分布などの前提条件が間違いないか、検証

このような取組が必要です。
 

参考文献

「禁断の市場」 ベノワ・B・マンデルブロ 著 東洋経済新報社
「カオス的世界像」 イアン・スチュワート著 白揚社
「複雑系を超えて」 上田 睆亮、稲垣 耕作、西村 和雄著 筑摩書房

 

 

経営コラム ものづくりの未来と経営

人工知能、フィンテック、5G、技術の進歩は加速しています。また先進国の少子高齢化、格差の拡大と資源争奪など、私たちを取り巻く社会も変化しています。そのような中

ものづくりはどのように変わっていくのでしょうか?

未来の組織や経営は何が求められるのでしょうか?

経営コラム「ものづくりの未来と経営」は、こういった課題に対するヒントになるコラムです。

こちらにご登録いただきますと、更新情報のメルマガをお送りします。
(登録いただいたメールアドレスは、メルマガ以外には使用しませんので、ご安心ください。)

経営コラムのバックナンバーはこちらをご参照ください。
 

中小企業でもできる簡単な原価計算のやり方

 
製造原価、アワーレートを決算書から計算する独自の手法です。中小企業も簡単に個々の製品の原価が計算できます。以下の書籍、セミナーで紹介しています。

書籍「中小企業・小規模企業のための個別製造原価の手引書」

中小企業の現場の実務に沿ったわかりやすい個別製品の原価の手引書です。

基本的な計算方法を解説した【基礎編】と、自動化、外段取化の原価や見えない損失の計算など現場の課題を原価で解説した【実践編】があります。

ご購入方法

中小企業・小規模企業のための個別製造原価の手引書 【基礎編】

中小企業・小規模企業のための
個別製造原価の手引書 【基礎編】
価格 ¥2,000 + 消費税(¥200)+送料

中小企業・小規模企業のための
個別製造原価の手引書 【実践編】
価格 ¥3,000 + 消費税(¥300)+送料
 

ご購入及び詳細はこちらをご参照願います。
 

書籍「中小製造業の『製造原価と見積価格への疑問』にすべて答えます!」日刊工業新聞社

書籍「中小製造業の『製造原価と見積価格への疑問』にすべて答えます!」
普段疑問に思っている間接費・販管費やアワーレートなど原価と見積について、分かりやすく書きました。会計の知識がなくてもすらすら読める本です。原価管理や経理の方にもお勧めします。

こちら(アマゾン)から購入できます。
 
 

 

セミナー

原価計算と見積、価格交渉のセミナーを行っています。

会場開催はこちらからお願いします。

オンライン開催はこちらからお願いします。
 

 

簡単、低価格の原価計算システム

 

数人の会社から使える個別原価計算システム「利益まっくす」

「この製品は、本当はいくらでできているだろうか?」

多くの経営者の疑問です。「利益まっくす」は中小企業が簡単に個別原価を計算できるて価格のシステムです。

設備・現場のアワーレートの違いが容易に計算できます。
間接部門や工場の間接費用も適切に分配されます。

クラウド型でインストール不要、1ライセンスで複数のPCで使えます。

利益まっくすは長年製造業をコンサルティングしてきた当社が製造業の収益改善のために開発したシステムです。

ご関心のある方はこちらからお願いします。詳しい資料を無料でお送りします。

 

]]>
https://ilink-corp.co.jp/8086.html/feed 0
デジタルトランスフォーメーションの真実と本当の怖さ https://ilink-corp.co.jp/7417.html https://ilink-corp.co.jp/7417.html#respond Fri, 04 Feb 2022 02:10:38 +0000 https://ilink-corp.co.jp/?p=7417 No related posts. ]]> 最近よく聞く言葉がデジタルトランスフォーメーション(以降DX : Digital Transformation)、新聞やマスコミ、ネットニュースで聞かない日はありません。多くの記事には「世界中でデジタル化が急速に浸透する中、多くの日本企業は遅れている」とも書かれています。

しかしそもそもDXとは何でしょうか?
今何をしなければならないのでしょうか?

DXの本質について考えました。
 

1.DXとは何か

DXとはどのような意味があるのでしょうか?

DXの定義は実は明確ではありません。
 

【広義のDX】

広い意味では、今現在私たちが直面している変化です。それは

「情報技術によって、様々な現実が融合され、結び付き、全てが繋っている世界へと変わっていきます。それは私たちの現実に対する理解、あるいは認識を変えていきます。従来の物理的なものに加えてデジタル化したもの(成果物)がよりインテリジェントになり、現実世界に大きく影響するようになり、個人の関心毎や価値観に変化を与えます。」

スウェーデンのウメオ大学教授エリック・ストルターマン氏が2004年に書いた論文「Information Technology and the Good Life」の主旨です。この論文で初めてDigital Transformationという言葉が使われました。エリック・ストルターマン氏の論文は思想的、哲学的な内容を含んでいて、その解釈は人によって様々です。
 

【狭義のDX】

「企業がAIやIoT、ビッグデータなどのデジタル技術を活用して、ビジネスモデルや業務を変革する抜本的な取り組み」

を指しています。

ここでAIやIoT、ビッグデータは必須でありません。従来の情報通信技術(IT : Information Technology)を活用して、業務の効率化や競争優位を獲得することも含まれます。
 

経産省のDXレポート

DXという言葉が広く知られるきっかけのひとつが経済産業省(経産省)のレポートです。

経産省は2018年に「DX(デジタルトランスフォーメーション)レポート」~ITシステム「2025年の崖」の克服とDXの本質的な展開~ を発表しました。2020年には続編として「DXレポート2 (中間とりまとめ) 」を発表しました。2018年のDXレポート1には

あらゆる産業において、新たなデジタル技術を利用してこれまでにないビジネス・モデルを展開する新規参入者が登場し、ゲームチェンジが起きつつある。こうした中で、各企業は、競争力維持・強化のために、デジタルトランスフォーメーション(DX:Digital Transformation)をスピーディーに進めていくことが求められている。

このような中で、我が国企業においては、多くの経営者がDXの必要性を認識し、DXを進めるべく、デジタル部門を設置する等の取組が見られる。

しかしながら、PoC(Proof of Concept: 概念実証、新しいプロジェクト全体を作り上げる前に実施する戦略仮説・コンセプトの検証工程)を繰り返す等、ある程度の投資は行われるものの実際のビジネス変革には繋がっていないという状況が多くの企業に見られる現状と考えられる。

と書かれています。そして

今後DXを本格的に展開していく上では、DXによりビジネスをどう変えるかといった経営戦略の方向性を定めていくという課題もあるが、そもそも、既存システムが老朽化・複雑化・ブラックボックス化する中では、データを十分に活用しきれず、新しいデジタル技術を導入したとしても、データの利活用・連携が限定的であるため、その効果も限定的となってしまうという問題が指摘されている。

と続き、その後は既存ITシステムの老朽化、複雑化、ブラックボックス化し、レガシーシステム(古くなったコンピュータシステム)となっている点を指摘しています。
 

レガシーシステムの問題?

このDXレポート1を読むとDXの主題は「レガシーシステムの問題」でした。

これについてDXレポート2ではDX の定義として、

「企業がビジネス環境の激しい変化に対応し、データとデジタル技術を活用して、顧客や社会のニーズを基に、製品やサービス、ビジネスモデルを変革するとともに、業務そのものや、組織、プロセス、企業文化・風土を変革し、競争上の優位性を確立する」

として、レガシーシステムの問題でなく、デジタル技術を活用して変化に柔軟に対応できていないことが問題としています。

ところがDXレポートに書かれている変化は、

  • 業務のオンライン化(テレワーク)
  • ペーパーレス化
  • DXの推進体制やITベンダーの役割

です。

これは競争優位につながるような変化なのでしょうか?

ではDXがもたらす変化とは何でしょうか?

DXがもたらす真の変化について調べました。
 

2.DXは目的か手段か

DXに関して多くの書籍(DX本)が出版されています。このDX本にはどのようなことが書いてあるのでしょうか。
 

DXの本にある劇的な変化

多くのDX本には、現在社会には以下の3つの大きな潮流があると書かれています。

  • データのデジタル化の推進
  • IoTなど人やモノがネットワークでつながる
  • コンピューターの中の仮想世界とリアルな現実がシームレスでつながる

 
これらが新しい体験や新しい価値を生み出し、従来の事業を崩壊「ディスラプション(disruption)」させると主張します。
 

図1 社会を変化させる3つの潮流

図1 社会を変化させる3つの潮流

しかし具体的に、どのような崩壊が起きるのか、書かれていません。
 

目的と手段の順序が違う

DXは、先に述べた「AIやIoT、ビッグデータなどデジタル技術を活用して、ビジネスモデルや業務を抜本的に変革する」ことで、新たな事業が生まれ、従来の事業が崩壊するといわれています。

つまり図2のようにデジタル化という「手段」を使うことで、大きな変革を生み出し、競争優位の確立することがDXです。

しかし競争優位の確立は目的でしょうか?

本来は、事業変革の目的は
対象(顧客)の課題の解決や利便性向上など
新たな価値の創出です。

そのための手段がデジタル化やITによる変革(DX)です。

その結果得られるものが競争優位です。
 

図2 DXの定義

図2 DXの定義

目的と手段の取り違いが、DXに関する議論を読んでもピンと来ない原因ではないでしょうか。

目的があいまいでも、DXというツールを導入すれば新たな価値は生まれるのでしょうか?

またDX本には「デジタル化(テレワーク)で浮いたコストや時間を使って新しいビジネスへ投資する」とも書かれています。しかし実際は逆です。

「新たな事業に取り組まなければならない必然性」
があって「どうしてもリソースが足らない」から、DXでも何でも使って余力をつくるのです。

そうでなければDXで生まれた余力は有給消化や人員削減などで消えてしまいます。

あるDX本には「ITを使って変化を起こし売上や利益を伸ばす仕組みをつくる」とありました。しかし、

  • ITを使えばどのような変化が起き
  • どのような売上や利益を伸ばす仕組みができるのか

具体的なものはありませんでした。
企業や組織がそれまでに築いた仕事のやり方、企業文化は堅牢です。
コンサルティングの現場で、何度もこの堅牢な壁に阻まれ、変革を起こすことができませんでした。
それがITやDXに取組めば変革を起こせるのでしょうか?
 

図3 DXによって新しい価値を生む

図3 DXによって新しい価値を生む

突然出てくる「アジャイル」とは?

DX本を読んでいるとなぜか「アジャイル開発とウォーターフォール開発」というソフトウェアの開発手法が突然出てくることがあります。

【アジャイル開発】
アジャイル(Agile)とは、『素早い』『機敏な』『頭の回転が早い』という意味です。システムやソフトウェア開発の手法で、全体を一気に構築するのでなく、小さな単位でシステム構築とテストを繰り返して開発する方法です。

メリット

  • 柔軟で臨機応変な対応ができるため開発スピードが早い
  • WEBサービスのように、最初にサービスの一部をつくって顧客の反応を見ながら改良するものに向いている
  • 小さな機能単位で実装とテストを繰り返すため、効率がよく、修正の手間が少ない

 

デメリット

  • 新たな機能をつくるときに前につくった機能の修正が発生する
  • 最初につくった機能をやり直すなど作業の重複や無駄が発生する
  • 要件ごとに計画を立てるため、プロジェクトの全体像が見えにくく、いつまでに完成するのかわかりにくい

 

図4 アジャイル開発

図4 アジャイル開発

【ウォーターフォール開発】
従来のITシステムの構築方法です。最初の段階で、機能仕様を決定し、『企画』『設計』『実装』『テスト』などを決められた担当者が行います。

メリット

  • 作業の重複や無駄がない
  • 全体の計画や進捗がわかりやすい

 

デメリット

  • どこかの工程で遅れが生じると全体が遅れる
  • 仕様など上流工程で変更があると、大きな後戻りが生じ、コストも大幅に上がる

 

図5 ウォーターフォール開発

図5 ウォーターフォール開発

アジャイル開発が最新の手法で、ウォーターフォール開発が古い手法というわけではありません。

開発するシステムの機能や性質によりアジャイル開発に向くシステムとウォーターフォール開発に向くシステムがあります。

なぜソフトウェア開発の手法がDXなのか理解に苦しみます。
 

DX本の内容と30年前のBPRの類似性

DX本では、DXを推進するためにDX推進本部を設立して全社的に進めることを提言します。しかし目的や課題があいまいなまま業務効率化のためにDXを推進して変革は生まれるのでしょうか?
競争優位の本質は

  • 商品が優れているか
  • 商品の提供方法が優れているか
  • 今までない商品やサービスで顧客に新たな価値をもたらすか

です。

アップルのiPodが売れた大きな要因は、スティーブジョブズがアメリカのレコード会社とタフな交渉を行い、自社の音楽ダウンロードソフトiTunesからアルバムの曲を1曲1曲バラで買うことができたことがありました。それを実現したのはジョブズの信念とタフな交渉力でした。

DX本に書いてある主旨は、30年前のBPR(Business Process Reengineering)の本の趣旨ととても似ています。

1990年代、元マサチューセッツ工科大学教授のマイケル・ハマーと経営コンサルタントのジェイムス・チャンピーの両氏がBPRを提唱しました。

BPRは、優れた企業をお手本(ベンチマーク)にして自社の業務を洗い出し、最も効率的なやり方(ベストプラクティス)に変えることで業務の効率化とコスト削減を実現する手法です。アメリカで大流行し多くの企業がコンサルタント会社にBPR推進のコンサルティングを依頼しました。

しかし短期的な成果を強く求める経営者によりBPRリストラ(人員整理)の代名詞となり不評を買いました。

図6 BPRの構成例

図6 BPRの構成例

3. DXで新しい価値を生む

一方、AI、VR、AR技術の進歩により今までにない製品やサービスも生まれています。さらにデジタル化で発生する大量のデータを活用すれば新たな価値を生むことができます。
 

AR技術を活用したLIXIL

住宅設備メーカーLIXILから独立した株式会社 K-engine(ケイエンジン)は、リフォームするキッチンやリビングの3D画像や見積を短時間で作成することができます。設備や部材の変更もその場で可能です。

LIXILグループには300万点以上の機器のデータや膨大なリフォームのデータがあります。 K-engineはこれを活用し、AR技術を使って実際の住宅の写真に新しい玄関の画像を貼って、リフォーム後のイメージを確認できます。
 

JR東日本のSuicaのデータ活用

日清食品はSuicaのデータから社員の出張旅費を自動的に清算するシステムを自社で開発しました。このシステムは他社でも利用できるため、日清食品はJR東日本と提携し外販を開始しました。

実は鉄道鉄道会社やバス会社の持っている時間帯別、曜日別の乗降客のデータは、新規出店や既存店の仕入れ予測、売上予測に活用できる非常に価値のあるデータです。2022年1月、JR東日本はこうしたSuicaのデータを今後は外販すると発表しました。

自動車が走っている時の振動やカメラの画像から道路やインフラの補修の判断を行う試みも検討されています。車のドライブレコーダーは常時街中の画像を取得していて、このデータを求めている企業に売れば大きなビジネスの可能性があります(プライバシーへの配慮は当然必要になりますが)。
 

4. デジタルマーケティングは新たな価値を生むか?

DXと一緒に広まっているデジタルマーケティング、これはどんなものでしょうか?

DX、デジタルマーケティングに関連して様々なカタカナ用語が氾濫しています。その意味を整理してみます。
 

デジタルマーケティング

Webサイトのユーザー行動に加えて、スマートフォンやタブレットや公式アプリの行動履歴、商品に搭載されたIoT機能から送られるデータ、これらバーチャルのデータに加えて、イベントでの来店データや販売履歴などリアルな活動データも併せて収集・分析します。これを活用して個々の顧客に対して、WEBマーケティングとリアルマーケティングを合わせて総合的にマーケティングすることです。
 

WEBマーケティング

公式Webサイトを訪れた顧客の、サイト内での行動を追跡して、顧客がどのような情報を求めているのかを探ります。そして顧客が情報に満足して購買につながるようにWebコンテンツを改善します。
 

オムニチャネル

従来のリアルなチャネルとWebを合わせたチャネル(顧客との接点)のことです。マス広告や実店舗に加えて、インターネット広告やメール、SNSなどデジタルツールも活用して顧客と多くの接点をつくります。
 

カスタマージャーニー

「顧客が商品を知った点から購入して実際に利用するまでのプロセス」を指し、一般的にはカスタマージャーニーマップとして図式化します。顧客との接点を図式化し、購買までの顧客の感情の変化を誘導して効果的な販売促進を行います。

図8 カスタマージャーニー

図8 カスタマージャーニー

データドリブン

データに基づいてマーケティングを組み立てます。データドリブンは以下の4つのアクションから成り立っています。

  1. データ収集
  2. ・社内のあらゆるデータを収集し、精査・統合
    ・場合によってはデータ管理ツールの導入

  3. データを「見える化」
  4. ・データを効率よく分析するため、集めたデータ分析しやすい形に加工(「見える化」するという)

  5. データ分析
  6. ・見える化されたデータを分析し、課題の設定や具体的な取組を引き出す
    ・データサイエンスとマーケティングの両方の知識が必要

  7. 実行する
  8. ・具体的なアクションプランを実行する
    ・実行するだけではなくPDCAをまわしてデータドリブンマーケティングを深化する

例 アスクルの一般消費者向けサイト「ロハコ」
自社のウェブサイトがどのように閲覧され使われているか、分析し、表示するシステムを導入しました。その結果、顧客が商品を探す時のニーズと、企業が売りたいものがずれていることがわかりました。

企業は「これを買ってください」とプッシュしていましたが、顧客は「毎日サイトを見に行けるし、さらに買い物ができるお店」を求めていた。クリックしても買わずにおいておく商品が多くあり、買うときはまとめて買います。こういった顧客は1回のサイト訪問で購入する比率は低くなります。

そこで同社は来訪者が購入に至る比率(コンバージョンレート)は追い求めないことにしました。
 

MA(マーケティングオートメーション)

マーケティングを自動で行うツールです。顧客の名前やメールアドレスを取り込むと、あらかじめ作成したメール文面を自動的に顧客に送信し、営業活動を自動化します。
 

Web解析ツール

Webサイト上での顧客の行動や、WEBサイトの検索順位などを分析するツールです。PV(ページビュー)数やUU(ユニークユーザー)数、直帰率など、サイトの訪問者数や行動データを細かく集計・分析できます。主なツールは、「Google Analytics」や「Adobe Analytics」などです。

図9 ウェブサイトは解析されている

図9 ウェブサイトは解析されている


 

SFA(セールスフォースオートメーション)

営業管理システムとも呼ばれ、営業プロセスや営業の進捗状況をチーム全体で管理し、効率化を図るツールです。案件の管理や営業レポートの作成など、営業業務を効率化するための機能があります。
 

エコシステム

元は生態系の用語です。ある領域(地域や空間など)の生き物や植物がお互いに依存しながら生態を維持する関係をエコシステムと呼びます。

例 iPhoneのエコシステム
iPhoneのエコシステムの画期的な点はAppStoreで誰でもiPhoneアプリを開発し、iPhoneで売ることができることです。これにより多くのアプリ開発者がアプリを開発し、短期間に膨大な機能をiPhoneは得ました。

初期のアプリ開発者の中には一人で開発したアプリがヒットして多額の売上を得た人もいます。開発されたアプリはアップルが審査して不正なアプリを排除したため顧客も安心して利用できました。

これは今までの携帯電話やPCにはなかったシステムです。
 

ツールが主役? 忘れられた顧客

そもそもマーケティングとは

企業などの組織が行うあらゆる活動のうち、「顧客が真に求める商品やサービスを作り、その情報を届け、顧客がその価値を効果的に得られるようにする」ための概念

顧客のニーズを解明し、顧客価値を生み出すための経営哲学、戦略、仕組み、プロセス

(Wikipediaより)

ピーターFドラッカーは
「マーケティングの理想は、販売を不要にするものである。」
マーケティングとは

  • 顧客のニーズに合った商品を、適切な顧客層に発信するための、「商品開発から販売戦略の策定、広告宣伝に効果検証までのプロセスを管理すること」
  • そして商品が「売れる仕組み」をつくること

これにより「買ってください!」とお客様にプッシュせずとも、お客様が買いたくなる状態になることです。
 

マーケティング本来の意味と比較すると、デジタルマーケティングは手法が先になってしまいます。そして本来PRを受ける顧客の考えや立場が置いてかれていかれています。

コンテンツが隠れるネット広告や、一度クリックすると何度も同じ広告を表示するターゲッティング広告などがいい例です。

実際、展示会でマーケティングオートメーション(MA)の会社と名刺交換すると、MAツールのPRメールが頻繁に来ます。しかしたまたま展示会で興味があって質問しただけなのかもしれません。それなのに何回も送られてくるMAツールのPRメールは効果があるのでしょうか? 
 

最近広まったお問合せフォームへの営業メール

企業のお問合せフォームに営業メールを送る手法が広まっています。これがRPA (Robotic Process Automation)などで自動化されれば、営業メールの洪水になりかねません。そうなると、お問合せフォームにRPAが入力できないようbot対策が必要になってきます。

注) RPA (Robotic Process Automation)とは、コンピューター上で行われる業務プロセスや作業を人に代わり自動化する技術です。人間が繰り返し行うクリックやキーボード入力など定常的な業務が自動化できる
 

見直されるデジタル広告

個人情報をもとに広告を配信するデジタル広告は、その広告を不快と感じる読者が増加しつつあります。さらに個人情報を補足する「Cookie」も広く使われています。アドネットワークの普及で、広告が質より量という考え方に変化し、ページビューを追い求める動きが加速しています。広告を掲載することでサイトの質が問われます。再び広告の質が問われています。

現状ではデジタルマーケティングはツールとして進歩しましたが、販売を大きく変革するわけではなく、革新的マーケティングではありません。しかしデジタルマーケティングは、

実は私たちの消費行動を変えてしまう怖さがあります。

 

デジタルマーケティングの本当の怖さ

なぜなら顧客が知りたい情報(記事やニュース)に自社の有利な情報を入れれば顧客の関心を誘導できるからです。Yahooニュースなどのネットニュースは顧客の嗜好に合わせて最適なニュース記事を表示します。顧客が自動車の記事を多くクリックすれば、自動車に関するニュースや記事を多く表示します。

A社が自社のある車を売りたければ、その車の記事をクリックした顧客に、その車に関連した記事、その車に乗っている著名人の感想、その車で行った旅行記事、その車の開発ヒストリーの記事を頻繁に表示します。

記事を目にする機会が増えれば、いつの間にか顧客はその車のファンになっています。そしてある日ディーラーで契約書にサインしています。

これはステマ(悪質なステルスマーケティング)ではありません。正しい記事を顧客の嗜好に合わせてて供しただけです。

実は私自身、yahooニュースを見ていて、気が付いたらある車種が気になって買おうとしたことがあります。少し古い車でしたが、その車の良さを語るいろいろな記事を見ているうちに、以前は全く興味がなかったその車が欲しくなっていたのです。結局中古車しかなく、希望に合うものがなかったので断念しました。そして買えなかった後、もう欲しいという気持ちがなくなりました。

気づかぬうちに、欲望を操作されたような気がします。

実は顧客の欲望を生み出す点はマス広告も同じです。ただWEBの場合、表示される記事やニュースを個人ごとに調整(最適化?)できる点がで費用対効果が非常に大きくなります。

ネットでは各個人が関心を持つ事柄の情報が各個人に集まります。物語性のある広告、著名人のレビューやその商品を使ったユーチューブ動画などさまざまなコンテンツを表示し、その商品に少しでも関心がある顧客が見れば、ファンを増やすことができます。そして買いたい気持ちを起こすことができます。これはグルメ番組を見て、その料理を食べたくなるのと同じメカニズムです。

しかもネットは情報量が多いため、影響は顕著に表れます。

巧妙にコンテンツを設計すれば、個人の嗜好や考え方まで操作できるのです。

 

商品でなく企業を知ってもらうために企業自らコンテンツを制作

一方広告ではなく、企業が自らコンテンツを制作し、コンテンツを通じて自社を知ってもらう取組があります。池江璃花子選手の競技復帰までのストーリーを描いたSK-II STUDIOの5分22秒の動画は、SK-Ⅱを販売するP&Gプレステージ合同会社が作成しました。

監督には是枝裕和氏を起用し、2021年3月29日に公開して、6月9日で再生回数1,990万回を記録しています。

テレビ放送の場合、視聴率1%は国民の1%, 125万人です。実際は世帯の1%であり、1%は関東地区では約40万人、関西地区では約16万人です。対して上記の動画は約2,000万人、しかも世界中の人が見ています。しかも費用は制作費のみのため、テレビ放送と比較して費用対効果は非常に高いといえます。

かつては東芝の「サザエさん」のように1社単独でテレビ番組のスポンサーになることで、自社の知名度を高めるとともに、テレビ番組のイメージを自社のイメージに重ね合わせていました。

これをネット上でも行われているのです。

こうしたファンほ増やす試みで成功したのがスバルです。

北米スバルは2007年よりアメリカで『LOVEキャンベーン』を広告展開しました。オーナーの愛車への思い入れ(=LOVE)を強調した宣伝活動は、共感する人が増え、結果として認知度やブランドバリューがアップしました。

従来からSNSを使って企業と顧客が交流しファンを増やす試みは行われていました。今後は、動画や様々なコンテンツを企業が自ら制作し、知名度を高めるだけでなく、積極的にファインを増やすことが増えると予想されます。
 

5. DXの例

では、具体的にDXによって変わったビジネスにはどのようなものがあるのでしょうか?
 

ペーパーレス、テレワークはDX?

DX関連の記事は、目的と方法の順序が逆になっています。例えばテレワークはコロナ禍の今日、国からもテレワークを強く要請されているため、テレワーク自体が目的になってしまいました。

しかしグーグルやアップルは、社員同士のコミュニケーションや、非公式の会話から生まれる気づきやひらめきを重視して、

職場に集まることに重きを置いています。

日本は和を重視する文化のため活発な議論がなかなかお菊ません。その上テレワークで非公式の会話もなくなれば新たな発想や気づきが生まれるのでしょうか。

そもそもペーパーレスは何のために行うのでしょうか。ペーパーレスでも決済欄が10個もあれば決済に時間がかかります。承認した10人の管理者のうち、何人がプロジェクトの失敗を引き受けるのでしょうか?

しかも効率的なペーパーレス化には印鑑を廃して電子印鑑の仕組みが不可欠です。しかし企業でもまだ決裁印が必要なところもあります。銀行はメガバンクでは口座開設に銀行印は不要になりました。しかし行政の印鑑登録と印鑑証明はそのままです。

図10 なくならない印鑑

図10 なくならない印鑑


 

AR・VR技術への期待

テレワーク、WEB会議の普及でモニター越しの会議が一般化しましたが、対面での対話と比べて、言語外の情報量が不十分です。相手の感情をゆすり、共感を得るようなコミュニケーションは困難です。人は言葉だけで会話するのでなく、表情やしぐさ、場の雰囲気など言語外の情報量が多いためです。

VR会議はこれまでのWEB会議と異なり、以下のメリットがあります

  • 非言語情報の伝達
  • これまでの資料に加えて3Dイメージの活用

  • 高い臨場感
  • 没入感が高いため会議への集中力が高まり、意思決定が速くなる

  • コミュニケーションの活性化

アバターで会議を行うことで、リアルに対面するよりも話しやすくなり、発言量が増える

これらの技術はNEC、NTTデータ、(株)Synamon等が取り組んでいます。
 

「話す、聞く」をシステムで対応

株式会社RevCommのMieTelは、AIで電話営業の会話を録音し、自動文字起こし、分析を行い、顧客情報の共有と営業トークの改善を行うシステムです。会話の抑揚、速度、説明と聞く時間の比率を分析し担当者にフィードバック、自ら振り返ることで自主的に多岐に渡り改善します。

一方、将来音声認識の能力が向上すれば、AIがコールセンター業務を行うことも可能になります。AIは多数の受け答えを全て学習できるので効果的に学習でき、多くの問い合わせに的確に応えることができます。また顧客から質問があったことをWEBサイトのQ&Aや取説のQ&A集に入れることで問い合わせ自体も減らすことができます。コールセンターのオペレーターは、顧客からひどい言葉を言われるなど労働環境が厳しく離職率が高い職種ですが、AIのメンタルは決して壊れません。
 

「調べる」をシステムで対応

アメリカのamplified ai, inc.(アンプリファイド エーアイ)はAIを用いた特許調査プラットフォーム「Amplified」を提供し、特許調査の時間を85%短縮しました。費用は1件当たり2万円です。特許調査には専門知識が必要で、出願前の先願調査は専門家に依頼すると多額の費用がかかります。「Amplified」は、特許の複雑な長文を比較し、類似順に整理する独自のAIを持ち、ある概念を文章で入力すると世界中の特許1億3000万件から類似特許を検索して、類似順に並べてリスト化します。これにより類似特許検索のスピードとコストが飛躍的に削減できました。
 

「助言」をシステムで対応

株式会社STANDING OVATIONはAIコーディネート提案アプリ「XZ(クローゼット)」を無料で提供しています。手持ちの洋服を登録してクローゼットの中身をデジタル化でき、世界最大級のオンライン・クローゼットとして成長しました。

特徴
クローゼットの総価値をグラフ表示します。着用回数をランキングで表示し、着用回数の少ない服や1年間着ていない服に気づくことができます。

着ていないアイテムを使ったコーデ提案や、AIが着ていない服を手持ち服と組み合わせ新しいコーディネートを提案します。

今後は店舗が無料のアプリを提供し、自社製品のコーディネートを確認できれば、顧客は安心して購入ができ、さらに靴やアクセサリなど追加購入も実現します。コーディネートは顧客の年齢、性別、嗜好に合わせて変えることができるので、実際の店員よりも対応範囲が広くなります。
 

6. 製造業のDX 

実は製造業の方が、DXによって大きな変革が起きる可能性があります。
 

キーワードは最適化

製造業はDXと相性が良い職種です。なぜならプロセスが明確で各プロセスからきれいなデータが手に入るからです。これを使って様々な取組ができます。キーワードは、モデル化(シミュレーション)と最適化です。

工業製品は金属など硬くて安定した材料が多くシミュレーションと相性が良いです。曲げや液体の流動などの物理現象をシミュレーションするツールも整っています。例えば以下の取組はすでに行われています。
 

構造解析

製品や構造物の静的強度、振動などのデジタルモデルをつくり、強度や振動特性をシミュレーションします。実物をつくる前に特性を評価し、不十分な場合は対策します。すでに自動車ではシミュレーションを十分に行い、最初の試作を行わない「試作レス」に取り組んでいます。これは現物を試作したからといって、問題点を全て洗い出せるわけでなく、シミュレーションの方が確実に評価できるからです。
 

流動解析など加工プロセスの分析

鋳造、ダイキャスト、樹脂成形での金型内での金属や樹脂の流れ、プレス加工での金属の変形や応力の変化は、現物の評価が困難です。そこでコンピューターでモデルをつくり樹脂や金属の流れやプレス加工時の金属の変形や絞りをシミュレーションします。これにより最適な形状の金型や製造条件を調べ、最初から適切な加工条件できます。

ものづくりでは、解析技術の進歩により今まで見えなかった物理現象が見えるようになりました。そしてこれまで何回もトライ&エラーを繰り返して探求してきた加工条件を少ない回数で実現できるようになりました。
 

プロセスの最適化

製造ラインも同様で、実際の設備をつくる前に3Dのモデルで実際の工場のモデルをコンピューターの内部で実現し、動かして評価します。ダッソーシステムズの「DELMIA」はコンピューターの中の3Dモデルで構成した設備を本番と同じPLCのプログラムで動かすことができます。コンピューターの中で正しく動けば、そのプログラムは実際の生産ラインにすぐに投入できます。

BMWは、グラフィックボードのリーダー企業NVIDIAと組んで最新のバーチャルファクトリーを構築しました。NVIDIAの「Omniverce」というプラットフォームは、人やロボット、部品、搬送などをコンピューターの中でリアルにシミュレートできます。しかも世界中のどこからでもリアルタイムにアクセスできます。工場設計エンジニアはこの仮想空間で工場のレイアウトや設備、人の配置、生産活動やモノの流れを決めて、リアルな再現度でシミュレートします。将来は、設計と企画、生産チームが連携して、実際の生産活動をすべてシミュレーションしてから、現実の生産がスタートできるようになる予定です。

シミュレーションできればどういった条件が最適か短時間で見つけることができます。例えば将棋や囲碁は、コンピューターの能力が向上し、プロに勝つまでになりました。コンピューターはこれまで人間が考え付かなかった打ち手を繰り出します。現在プロ棋士はコンピューターのこういった新たな打ち手を勉強し、対局の準備をしています。コンピューターによる最適化技術が進歩すれば、

熟練の技術者でも思いつかない製造条件の組合せが生まれる可能性があります。

 

変種変量生産の不良分析

モーター、ロボットの大手 安川電機の入間事業所は、サーボモーター400種類、サーボアンプ600種類を変種変量生産しています。生産中に発生する不良は、同じ不良でも機種が違えば内容が違うため、単純に比較できません。

そこで、製造工程で発生するデータと不良を引き起こす要因を分析し、FTA(故障の木解析)を活用して不良の因果関係の分析を行いました。その結果、従来はデータが少ないため不明だった不良の原因が特定できるようになりました。また、個別の製造不良と設計不良の見極めが容易になり、製造部門から設計部門へのフィードバックが増えました。

異音検査は熟練の作業者が耳で聞いて判定するため、その育成には最低でも9か月を要します。そこでモーターの振動を測定しAI(機械学習)で判定させました。AIで判定できないものだけを人が判定するようにしました。
 

生産ラインの見える化

住友ベークライトは樹脂原料の製造ラインに従来の100個/ラインのセンサーを300~500個/ラインに増やし、取得したデータはPLCを経由して一元管理しました。製造ラインの制御を細かくかつ自動化することで作業者の半減を実現しました。各工程のPLCからのデータはエッジPCの「Edgecross」というソフトで収集し、社内サーバーのAI推論モデルが正常かどうかを判定、異常があれば担当者に連絡します。
 

生産計画の最適化

どういった順番でどの製品をどの設備で生産するか、生産管理(あるいは工程管理)は変数が多く、最適な答えを出すのが難しい業務です。

しかしこういった多くの条件の最適解を出すのはコンピューターの得意分野です。厳密に言えば条件が多いと組合せ爆発が起きて、とてつもない計算量になってスーパーコンピューターでも解けなくなります。しかし実際は全ての条件を評価する必要はなく、現実的な条件に範囲を狭めれば実用的な答えを出すことができます。

これは生産スケジューラとして商品化されていますが価格が高く、生産現場をモデル化するのが大変なため、あまり普及していません。しかしこの点を改善し、低価格で使えるクラウド型のソフトが出れば広く普及する可能性があります。今まで生産管理を行ってきた熟練社員が退職し、また製造工程の条件が増えてくると人が最適化するのは困難になるからです。
 

仮想工場で作業環境の最適化

3Dモデルを作成し、仮想空間で製造現場が構築できると、実際の作業者を仮想空間で作業させ、作業性や生産性を事前に評価することができるようになります。これはAR技術とVR機器の進歩により、作業者にVRゴーグルをつけて、あたかも実際に作業しているような感覚でコンピューターの仮想空間で作業を体験します。その中で、作業ミスをしやすい点、危険な点等を事前に発見し、改善することができます。

遠隔からの顧客に対し、AR技術を使って設備の立会を行う試みもあります。設備や製品など現物はPCのモニターからの情報だけでは、本当に良いかどうか判断できません。音声や視覚に現れない情報、実際の動きなどを見るために、重要な設備や製品は「立ち合い」が効果的です。そこでVR・AR技術を用いて、スピーカーやモニターだけでは伝えきれない情報を伝えることで、あたかも現場にいるかのように遠隔での立ち合いが実現します。

ドローンを使って工場の外観、内部を撮影すれば、今までとは別の視点で観察でき、現地での立ち合いよりも多くの情報を伝えられる可能性があります。
 

7. 静かに始まっている本当の変化

このように考えると、

  • リアルな現場がある
  • 自動化、試作レス、事前検証などデジタル化の強いニーズと問題意識
  • データやモデルが十分にあり、最適化のロジックが組める

こういった条件に合致する製造業はDXが最も進歩する分野といえるでしょう。実際これら紹介した取り組みは多くの工場ですでに行われています。

図11 DXで仕事は変わるでしょうか

図11 DXで仕事は変わるでしょうか


 

「すり合わせ型ものづくり」優位論

日本の製造業の優位性「すり合わせ型ものづくり」、これは言い換えれば、個人(や組織)の高い能力が様々な製品や製造工程を最適化できることです。しかし考慮すべき条件が増えて複雑化すると、人による最適化は限界に達します。

将棋や囲碁の例でもわかるようにコンピューターの能力が向上すれば、最適化の能力はコンピューターが人を上回ります。この時日本の「すり合わせ型ものづくりの優位性」は維持できるのでしょうか。

データを集めてアルゴリズムで処理して最適条件を見つけるのは、熟練の技術がなくてもできます。その点では、ものづくりの歴史の浅い新興国でも優位に立つことができます。

例えば半導体はかつて、すり合わせ型のものづくりをしていました。しかし設備が進歩し、それぞれの製造工程が前後の工程に影響せず、独立をして調整すればよくなった結果、工場の能力の優劣は、工場内の設備の負荷の調整という最適化の結果で決まるようになりました。その結果、台湾、中国の半導体メーカーと、日本メーカーの差はなくなりました。
 

プロセスとデータサイエンスの融合

一方、どのようなデータを収集し、どのような観点で分析するかは、プロセスとデータ分析の両方に深い知識がなければできません。その点で優れた生産技術者、プロセス管理者が多い日本企業にアドバンテージがあります。

熟練の生産技術者にデータサイエンティストが協力して、現場で発生するビッグデータを使って最適化の仕組みをつくります。今まで人がやっていたよりもはるかに効率の良い工場や現場の構成ができ、運用できる可能性があります。

コンピューターの特徴は高速性です。現場でPDCAを回すには、実際に現場のレイアウトを変えて、生産してデータを取る必要があります。少なくとも数日、工場によっては何ヶ月もかかります。しかしコンピューターがそのレイアウトの結果を出すのは数秒もかかりません。

そして結果が悪ければモデルを組み直せばよく、しかもモデルを組み直すロジックもアルゴリズム化することもできます。コンピューターが自動でモデルを組み直せばPDCAを短時間に何万回も回すことができます。これは熟練の管理者でも適いません。

Google DeepMindが開発した「AlphaGo」は2016年に世界トップ棋士の一人の李世乭 (Lee Sedol) と戦い、4勝1敗と勝ち越しました。

2017年10月に発表された4代目の「AlphaGo Zero」は、棋譜やビッグデータを必要とせず自己対局によって強化します。全くの初心者の状態から3日間でプロのレベルに到達し、21日目に2代目「AlphaGo」 と肩を並べました。40日間の学習後は、2代目「AlphaGo」 に100戦全勝しました。

「AlphaGo」は、これまでプロ棋士が考えつかなかったような斬新な打ち手を数々打ち出し、囲碁界に大きな衝撃を与えました。今ではプロ棋士が「AlphaGo」などコンピューターの打ち手を研究し、それが流行の布石・定石となり、囲碁の考え方に変革を起こしました。
 

逆に、人の能力と人による管理に固執すると、システムによる最適化やビッグデータの活用が進みません。コンピューターが計算した最適化の結果は今までの常識に反するかもしれません。その結果に対する根拠はコンピューターすらわかりません。
同様に保守的な管理者が

AIの出した常識外れの方法を受け入れるかどうかは管理者次第です。

 

加速する日本の優位性の喪失

「熟練の職人」、「高度な技術」と言っても、その多くはトップアスリートの技術や人間国宝の技ほど高度ではありません。そこまで高度なものを必要とすれば、安定した品質の工業製品を大量に生み出せません。つまりものづくりの高度な技能とは、長年の経験の積み重ねによる知識、判断、使いこなしの部類といえるでしょう。

これまではそれを人が所有していたため模倣が困難でした。また、人がそれを実行するためには、それを実行するような組織文化も必要になります。文化がなければいくら良い手法を指導しても、定着は困難です。

しかし多くの生産プロセスはNC化、自動化、コンピューター制御化しています。これらの条件を最適化するのはコンピューターでもできます。しかも高速で人よりも最適解を出せる可能性があります。NC工作機械やロボット、無人搬送車、自動倉庫で構成された工場をシミュレーションし、最適化するのは人かコンピューターのどちらが有利でしょうか。

そこに気が付きいち早く取り込んだ国に対し、日本はアドバンテージを保ちうるのでしょうか。

以下は人が手放したものです。人とコンピューター、どちらが有能かどうか、考えるまでもないでしょう。

  • 最適な道順 カーナビ
  • 構造体の強度 応力解析
  • 飛行機の操縦 フライバイワイヤシステム
    (B-2など最新の軍用機はコンピューターによる制御がなければ真っ直ぐですら飛べない)

 
本記事は未来戦略ワークショップのテキストから作成しました。
 

参考文献

Information Technology and the Good Life Eric Stolterman, Anna Croon Fors
「DXレポート~ITシステム『2025年の崖』の克服とDXの本格的な展開~」経済産業省
「DXレポート2 (中間取りまとめ)」経済産業省
「いちばんやさしいDXの本」 亀田重幸、遠藤経著 インプレス
「デジタルトランスフォーメーションで何ができるのか」西田 宗千佳 著 講談社
「テクノロジーを持たない会社の攻めのDX」内山悟志 著 クロスメディア・パブリッシング
「イラスト&図解でわかるDX」兼安暁 著 彩流社
「世界一わかりやすいDX入門」各務茂雄 著 東洋経済新報社
「現場が輝くデジタルトランスフォーメーション」長谷川康一 著 ダイヤモンド社
日経ものづくり 2020年8月号
 

経営コラム ものづくりの未来と経営

人工知能、フィンテック、5G、技術の進歩は加速しています。また先進国の少子高齢化、格差の拡大と資源争奪など、私たちを取り巻く社会も変化しています。そのような中

ものづくりはどのように変わっていくのでしょうか?

未来の組織や経営は何が求められるのでしょうか?

経営コラム「ものづくりの未来と経営」は、こういった課題に対するヒントになるコラムです。

こちらにご登録いただきますと、更新情報のメルマガをお送りします。
(登録いただいたメールアドレスは、メルマガ以外には使用しませんので、ご安心ください。)

経営コラムのバックナンバーはこちらをご参照ください。
 

中小企業でもできる簡単な原価計算のやり方

 
製造原価、アワーレートを決算書から計算する独自の手法です。中小企業も簡単に個々の製品の原価が計算できます。以下の書籍、セミナーで紹介しています。

書籍「中小企業・小規模企業のための個別製造原価の手引書」

中小企業の現場の実務に沿ったわかりやすい個別製品の原価の手引書です。

基本的な計算方法を解説した【基礎編】と、自動化、外段取化の原価や見えない損失の計算など現場の課題を原価で解説した【実践編】があります。

ご購入方法

中小企業・小規模企業のための個別製造原価の手引書 【基礎編】

中小企業・小規模企業のための
個別製造原価の手引書 【基礎編】
価格 ¥2,000 + 消費税(¥200)+送料

中小企業・小規模企業のための
個別製造原価の手引書 【実践編】
価格 ¥3,000 + 消費税(¥300)+送料
 

ご購入及び詳細はこちらをご参照願います。
 

書籍「中小製造業の『製造原価と見積価格への疑問』にすべて答えます!」日刊工業新聞社

書籍「中小製造業の『製造原価と見積価格への疑問』にすべて答えます!」
普段疑問に思っている間接費・販管費やアワーレートなど原価と見積について、分かりやすく書きました。会計の知識がなくてもすらすら読める本です。原価管理や経理の方にもお勧めします。

こちら(アマゾン)から購入できます。
 
 

 

セミナー

原価計算と見積、価格交渉のセミナーを行っています。

会場開催はこちらからお願いします。

オンライン開催はこちらからお願いします。
 

 

簡単、低価格の原価計算システム

 

数人の会社から使える個別原価計算システム「利益まっくす」

「この製品は、本当はいくらでできているだろうか?」

多くの経営者の疑問です。「利益まっくす」は中小企業が簡単に個別原価を計算できるて価格のシステムです。

設備・現場のアワーレートの違いが容易に計算できます。
間接部門や工場の間接費用も適切に分配されます。

クラウド型でインストール不要、1ライセンスで複数のPCで使えます。

利益まっくすは長年製造業をコンサルティングしてきた当社が製造業の収益改善のために開発したシステムです。

ご関心のある方はこちらからお願いします。詳しい資料を無料でお送りします。

 

]]>
https://ilink-corp.co.jp/7417.html/feed 0
独創的な考えを生み出す柔軟的思考 https://ilink-corp.co.jp/7084.html https://ilink-corp.co.jp/7084.html#respond Thu, 02 Sep 2021 00:21:18 +0000 https://ilink-corp.co.jp/?p=7084 No related posts. ]]> 今日ほどイノベーションの重要性が語られている時代はないかもしれません。

本コラムでは「どうすれば新しいアイデアが生まれるのか」発想法について、

「アイデアだけでない!発明の成功と失敗を分けたもの」で発明から実用化までの道のりを

「ひらめきを生むには?偉大なイノベーターが取り組んできた方法」でイノベーターに必要な4つの力について

「独創的なアイデアを生み出すための発想法 その1」ではジェームズ・ヤングのアイデアの作り方を紹介し

「独創的なアイデアを生み出すための発想法 その2」ではコラボレーションの力について

「なぜアイデアが出ないのか?製品開発と発想法の関係」では、ひらめきのメカニズムとブレインライティングやTRIZなどアイデア出しの手法について

述べました。

今回は、アイデアを出すために必要な柔軟的思考について考えます。
 

画期的なアイデアとイノベーション

 
iPhoneのタッチスクリーン、ダイソンのサイクロン方式の掃除機、ホンダジェットの翼の上のエンジンなど、革新的な製品には、今までにない発想の技術や機能があります。このような独創的な発想はどのようにして生まれたのでしょうか?
 

例えばホンダジェットの翼の上にエンジンを置くアイデアは、藤野道格氏(現ホンダエアクラフトカンパニー社長)の発案でした。
 

図1 ホンダジェット (wikipediaより)

図1 ホンダジェット (wikipediaより)

新型ビジネスジェットの構想に悶々としていた藤野氏は、ある日床に就いた時新型ビジネスジェット機の姿が鮮明に浮かびました。その姿が消える前にあわてて書き残そうとした藤野氏は、壁にあったカレンダーを引きちぎり無心で心に浮かんだジェット機を書きました。その機体はエンジンを翼の上に取り付けていました。従来翼の上にエンジンを置くことはタブーとされてきました。翼の上の空気の流れとエンジンからの空気の流れが干渉して抵抗が大きくなるからです。

一方従来のようにエンジンを胴体に取付ければ、エンジンを支える強度部材が胴体を貫通するため室内が狭くなり、エンジンの振動も客室に響きます。「本当に抵抗は大きくなるのか」藤野氏は、何度もシミュレーションを繰り返し、翼の上のある1点、そこにエンジンを置いた時だけ、干渉がなくなりむしろ抵抗が少なくなる点を発見しました。
 

図2 MH02 (wikipediaより)

図2 MH02 (wikipediaより)

このように聞くと、藤野氏という優れた技術者の独創的なアイデアと思えます。しかし実はその前にホンダは、MH02(通称 シビックジェット)という機体を試作していました。決してスマートとは言えない機体でしたが、こうした積み重ねの上に藤野氏の独創がありました。

今日では情報通信技術の発達により社会はめまぐるしく変化し、従来主流だったものが短期間に時代遅れになっています。フィルムカメラはわずか数年で急速にデジタルカメラに置き換わり、フィルム界の巨人コダックですら倒産しました。そのデジタルカメラもスマートフォンのカメラ機能の発達により短期間に市場を失い、今では写真を趣味とする人のみのものとなってしまいました。

このような時代においては、従来のように決まった公式にあてはめて正解を出すのでなく、答えのない中で最適な解を見つける能力が求められています。そしてそのような心は人類が太古の昔から持っていたものでした。
 

変化を求める心

 

人類大移動

実は13万5千年前、急激な気候変動により人類の祖先は絶滅の危機に瀕していました。当時人類の数は激減し、今ならレッドリストに入るくらいでした。この時、人類を救ったのが好奇心でした。現状に満足せず、ひとつのところにじっとしていられない「落ち着きのない」私たちの祖先は、今いる居住地を離れ、世界各地にさまよいました。

そして人類が誕生してから数十万年前までアフリカに留まっていた人類は、5万年前までにヨーロッパ全域に広がりました。そして1万2千年前までに地球の隅々にまで広がりました。南アメリカの南端に住む先住民族は、この人類の大移動に乗ってアフリカからヨーロッパ大陸、北アメリカを通り、南アメリカに達した「最高に落ち着きのない」人たちの子孫です。こうして私たちの祖先は、未開の地を探検することで生存に適した新たな地域に広がり、種を存続させることができました。

このリスクを取る能力は個人差があります。それは脳の報酬系にはたらく神経伝達物質ドーパミンの違いによります。ドーパミン受容体遺伝子D4 (略してDRD4)はドーパミンに作用する神経伝達物質で、このDRD4にはいくつか変種があります。そして特定の変種を持っている人は、報酬系のドーパミンに対する反応が弱くなってしまいます。このような人は満足することが少ないため、常にリスクを取って変化を求める傾向にあります。
 

柔軟的思考には報酬が必要

そして独創性や柔軟的思考には、脳の報酬系に対する反応が不可欠です。つまり何かをすることで心が満たされる「楽しい」と思う必要があります。140万年前、人類の祖先ホモ・エレクトスがつくった左右対称の手斧は最古の芸術作品です。狩りや伐採の道具である手斧はきれいな左右対称の必要はありません。140万年前、この手斧の持ち主は現代の彫刻家同様にきれいな対称形にすることに喜びを感じて黙々と作業(創作)に励んだと思われます。

このような芸術活動は、その結果自体が脳に対する報酬、つまり楽しさです。これに金銭的な報酬を加えると「創作」の喜びは半減します。無報酬だからこそ楽しいのであって、140万年前でも、誰かが手斧を完全に対象にしたら「マンモスの肉1塊」の報酬を与えたら、彼の創作意欲は半減したでしょう。

一方1950年代のコンピューター学者は、コンピューターが複雑な論理的問題を解決できればそれは知能を持つと考えました。そしてこの汎用問題解決プログラムを人工知能と呼びました。確かにコンピューターは「AはBである」「BはCである」ゆえに「AはCである」といった論理演算を高速で行うことができます。

しかし現実の問題の解決には、「欲しい」「いらない」といった欲望や報酬に関するものが必要です。つまり現実の問題は意思決定を含むため、「Aさんはアップルパイが好きだ」「アップルパイが300円で売っている」ゆえに「Aさんはアップルパイを買う」とはならないのです。こういった現実問題を解くには欲望や報酬も含めた柔軟的思考が必要です。しかし何十億個ものトランジスタを並べた今日のコンピューターでも柔軟的思考は実現していません。
 

報酬系と意思決定

人の意志決定に脳の報酬系はとても大きな影響があります。我々の日常「1,000円の予算でランチセットに食後のコーヒーを頼むか、1,200円のコーヒーデザート付きの定食にするか」といった意思決定を日常行っています。その際には、余分に200円かかる「痛み」とデザートとコーヒーという「喜び」をはかりにかけているわけです。

35歳で脳に腫瘍が見つかり切除した「患者EVR」と呼ばれる人物がいました。手術の後心理テストを行いましたが、IQは120前後あり問題ありませんでした。しかし手術の後、彼は物事を一切決められなくなりました。実は手術により脳の報酬系の機能を一部切除したため、満足を感じられなくなっていたのです。しかし心理テストは分析能力を主にテストするため、異常は見られませんでした。しかし、あいまいな状況で意思決定を行うには、論理的には結論が出ず、様々な条件を懸案してほどほどのところで妥協する(満足する)という感情の働きが欠かせないのです。

論理的に正解がなく、あいまいな条件の中で意思決定を行うには、脳の報酬系の働きが欠かせないことが分かりました。そしてそのような意思決定は欲望と報酬系のある人しかできません。欲望のないコンピューターに、アップルパイとシフォンケーキのどちらが良いか、決めることはできないのです。
 

脳の報酬系と前頭前野

 

休んでいない脳

よく私たちは脳全体の10%程度しか使っていないと言われます。しかし実際は休んでいる間も脳全体がくまなく活動しています。近年脳イメージング技術の発達により、休んでいる時、脳がどのように活動しているのか明らかになってきました。その結果休んでいる時の脳は盛んに活動し、しかも今まで関係がないと思われていた脳の各部の構造体が互いに交信してネットワークを構成していました。これをデフォルト・ネットワークと呼びます。このデフォルト・ネットワークを構成する構造体は、連合野と呼ばれる領域にあり、ここには感覚系、運動系、そしてそれらと無関係に精神プロセスに関するものがあります。

図3 fMRIスキャンが示す大規模脳ネットワーク (Wikipediaより)

図3 fMRIスキャンが示す大規模脳ネットワーク (Wikipediaより)

従って私たちは考えるだけでなく、見たり聞いたりといった五感で受け止めたことや、運動などの刺激と、頭で考えたことがネットワークを形成し、そのつながりの中からひらめきを生み出されるのです。そして大脳に存在するニューロンの3/4が連合野に含まれています。

この連合野は舞台裏(無意識)で働いていて、いろいろな思考があちこちをさまよっています。特にぼーっとして何かに集中していない時に活発に働きます。ですから藤野氏のように寝ようと思ったときに理想の飛行機の姿がくっきりと浮かび上がるのです。同様に入浴や食事、散歩なども連合野の働きが活発になりひらめきが生まれやすくなります。
 

自由奔放な脳と厳格な脳

一方脳は右脳と左脳で異なる思考をします。左脳は論理的に整合の取れた連想を行い、右脳は直感に基づいて漠然とした風変わりな連想を行います。よく芸術家は右脳が活発に働くと言われています。このように脳は、右脳と左脳で独立した認知システムとなっていて、それを脳梁の上にある前帯状回と呼ばれるものが繋いでいます。例えば、左脳が論理的に考えても答えが見つからない場合、前帯状回が介入して、右脳の働きを強めます。そして右脳により柔軟的思考が行われ、アイデアが生まれます。

これは言い換えると、厳格でルールに基づいて思考する左脳と、脈絡がなく自由奔放に思考する右脳があり、それを前帯状回がコントロールしています。日常は左脳の論理的な思考で判断していますが、論理的な思考で解決できない状況に陥ると、前帯状回が介入して右脳のはたらきを強めます。そして人類は、右脳の柔軟な思考、リスクを冒してチャレンジする思考により新たなフロンティアを開拓して生き延びることができたのです。
 

自動操縦モード

このように私たちの意思決定には、論理的な決定と柔軟であいまいな中での決定があります。一方今日では我々が1日に受け取る情報量が非常に多くなっています。数十年前には一人で1日に受け取る情報量は3万語以下でした。今日では10万語以上と3倍になっています。ランチに行くのにも、今までは近くのA店とB店とC店の3択だったものが、今ではグルメサイトを検索して、20以上のお店から価格とメニューを比較しています。

このような多くの情報に対して、私たちは毎回厳密で論理的な判断を行っていません。今までに経験した決まったパターンに従って「自動操縦モード」で選択します。

心理学者のエレン・ランガーは、被験者がコピーを取ろうとする時、実験スタッフに「先にコピーを取らせてもらうように」お願いした時の反応を調べました。実験の結果、お願いの最後に「急いでいる」という理由を言うと94%の被験者が頼みを聞き入れました。ところが理由を「コピーを取りたい」という理由でも93%の人が頼みを聞き入れました。つまり理由を言われたら譲るという自動操縦モードになっていたのです。
 

このように私たちは、日常生活の様々な場面で判断する際、重要でない大半の判断はすでに決められた台本に従って自動的に判断していました。しかも台本の中身をチェックすることなく。この自動操縦モードは、専門家の判断にも見られます。専門家は幅広い知識を持っていて、それを駆使して様々な問題に対し判断を下します。その時これらの問題に対して判断するのは論理的な連想の左脳です。そして専門家はなまじ豊富な専門知識があるため、常に左脳で判断するため柔軟な思考に欠けることがあります。その結果、視野狭窄に陥り誤った判断に陥ってしまいます。(専門家の誤謬)
 

「アメリカ医学会ジャーナル」が数万件の入院例のデータを調べたところ、急患患者の30日後の死亡率は、主任の医師が不在の時は1/3に下がっていました。これは主任の医師の誤診が多いことを示し、その理由は普段見慣れない症状があってもそれまでの経験に基づいて判断してしまうためでした。つまり誤診されたくなかったら「経験の浅い医師」に診てもらうことです。
 

図4 診察は経験の浅い医師に

図4 診察は経験の浅い医師に

これに対して、対立する意見は別の視点で考えるきっかけになり視野狭窄に陥るのを避けることができます。心理学者のセルジュ・モスコヴィッシは青色と緑色のスライドの色を判定する実験を行い、参加者の何人かにわざと間違った色を答えさせました。そして、再びテストを行ったところ、被験者は先の間違った回答の影響を受けていたことが分かりました。つまり人は他人の間違った回答に対して納得していなくてもその影響を受けているのです。従って対立する意見により自分の凝り固まった考えが揺らぐ効果があることが分かりました。

脳は無意識があげた様々な考えのうち、非現実的なアイデアを取り除くフィルターがあります。つまりばかばかしいと思うアイデアは、頭の中に顕在化する前に排除しています。つまりそれとなく浮かんでいても気づかないのです。
 

疲れた方がアイデアが浮かぶ

 

自由奔放な脳を解き放つ

近年集団行動が苦手な子供たちが注意欠陥多動性障害(ADHD)と診断されることがあります。ところがADHDの子供とエリート学者養成課程の子供に極めて共通していることが分かりました。

ADHDは報酬系のドーパミン受容体が正常でなく脳の報酬回路が弱まっています。そのため何を達成しても良い気分が続かず、すぐ他のことに気持ちが向かってしまいます。そのため学習で決まった課題をこなすことが困難な反面、本当に興味を持てるようなことに直面すると取りつかれたように集中します。そう考えるとADHDは太古の昔、私たちの祖先がフロンティアを開拓する力の源泉ともいえます。

図5 脳の構造

図5 脳の構造

一方私たちは日常生活で、欲望のままに自由に行動すれば非難されたり逮捕されたりします。お腹が空いたからと言って、コンビニ棚からおにぎりを取ってお金も払わずに口に入れれば犯罪です。そのような社会規範に反する考えを抑制する認知フィルターが前頭前野の側面にある脳の指揮系統 外側前頭前野です。脳卒中などで外側前頭前野を損傷すると、欲望に対する抑制が働かず、レストランで通りがかりの隣のテーブルの食べ物を平気で食べてしまいます。

また子供の脳は、運動や感覚といった機能が最初に発達し、前頭葉が発達するのは後になります。そのため幼児は外側前頭前野が未発達です。初対面の人にいきなり失礼なことを言って親をハラハラさせます。
 

一方で外側前頭前野は脳の柔軟な思考を妨げます。例えば外側前頭前野の働きを電磁エネルギーで弱めると、柔軟的思考の能力が高くなります。詩人のアーシュラ・K・ル・グウィンは「創造的な大人とは生き延びた子供のことである」と語っています。

この外側前頭前野はドラッグやアルコールによっても働きが弱くなります。職場の飲み会でアルハラやセクハラが起きるのも、普段は意識していない欲望がアルコールにより外側前頭前野という番人が弱くなったために開放されてしまうからです。
 

また外側前頭前野は脳が疲れてくると働きが弱まります。つまり脳が疲れた時の方がよいアイデアが出るのです。2011年ミシガン州立大学で、朝方と夜型の学生に対して、それぞれ朝と夕方に同じような分析的な能力が必要な問題と独創的な能力が必要な問題を出しました。その結果、自分にとって調子の良い時間帯では、分析的な能力が必要な問題の成績が良く、調子の悪い時間帯では創造的な能力が必要な問題の結果が良いという結果になりました。疲労している方が柔軟的思考能力が高まるのです。

従って想像力の高い人には外側前頭前野の働きが弱い人が多く、これはモラルや理性が低いことでもあります。実際、創造的な仕事をする音楽家や研究者には奇行が知られています。
 

2016年に69歳で亡くなったデイヴィッド・ボウイは、1970年代10代の頃は、コカインを常習し12~15才のファンの女の子の多くと性的関係を持ちその数は1,000人を超えると言われています。

また交流を発明し、エジソンと競ったニコラ・テスラは、幼少期は強い強迫観念に囚われ、成人以後は異常な潔癖症でした。また「宇宙人と交信している」などの奇怪な言動が多くありました。

図6 ニコラ・テスラ(wikipediaより)

図6 ニコラ・テスラ(wikipediaより)


 

一方多くの人はそこまで外側前頭前野の働きは弱くなく、法と社会常識の範囲内で平和に過ごしています。逆にこの法と社会常識の範囲内に思考を狭めてしまうため、無意識下にアイデアが浮かんでも、脳の認知フィルターがそれを排除してしまいます。そしてありきたりなアイデアしか浮かばなくなってしまいます。アイデアを出すためには外側前頭前野の働きを弱めて自分の持つ創造性を活性化させる必要があります。しかもアルコールやドラッグに頼ることなく。
 

例えばアイデア出しの場で、「おバカ棒」という方法があります。これを握って提案する時は、決して馬鹿にしてはいけないというルールでアイデア出しを行います。これは前頭前野の働きを弱める効果があり、初期段階のアイデア出しでは大きな効果があります。
 

何もしない時間

前述のように考え続けて脳が疲れた時、前頭前野の働きは弱くなり、柔軟な思考能力が高まります。この脳が疲れた状態で何もせず、心を解き放つとひらめきが生まれます。例えば以下のような状態です。

  • トイレや入浴、就寝時
  • 散歩
  • 車の運転
  • 飲酒やドラッグ

ただし飲酒はそのまま飲み続けると大抵はひらめきを忘れてしまいます。
 

あるいはいろいろなアイデアを持っている人との会話は、会話から入って来る情報が脳のネットワークに新たなつながりをもたらし、ひらめきが生まれます。実際、組織の中で良いアイデアを持っている人の多くが、組織の構造的なすきま、つまりチームとチームのはざまにいる人たちです。彼らは双方のチームから豊富な情報を得ていて、両方の情報を結びつけることでひらめきが生まれます。
 

スティーブ・ジョブズはピクサーを買収した際、本社の中央にアトリウムを設け、そこに会議室、メールボックス、カフェテリア、トイレを設置しました。ジョブズは、毎日組織の様々な人たちが顔を合わさずにはいられない環境をつくり、アイデアを生まれるようにしました。このように様々な専門分野の情報、矛盾する情報や多くの人の意見に触れることが、ひらめきには必要です。
 

「想像力は天賦の際ではない。アイデアの”取引”によってうまれるものだ」
社会学者ロナルド・S・バート

 

柔軟的思考

 

こうした柔軟的思考をもったイノベーターには他にも特徴があります。
 

イノベーターの特徴

そのひとつが、決して満足しない高い要求と、強い探求心です。買ってきた製品に少しでも不満があれば、怒鳴り散らして「くそだ!」と蹴飛ばすことです。そして、さらにその後で「なぜ○○なんだ?」と問いかけることです。
 

アップルでiPodプロジェクトメンバーのフィル・シラーは以下のように語っています。
「私たちは本当にウォークマンにうんざりしていたので、何かをつくらずにはいられなかった」それは彼の音楽に対する情熱と、当時主流だったウォークマンという製品への不満でした。そしてiPodを開発する際に1980年代ヒューレット・パッカードのワークステーションにあったスクロールホイールを使用しました。これはiPod発売当時「売り」となりました。

図7 初代iPod  (wikipediaより)

図7 初代iPod (wikipediaより)


 

情報収集の力

このように脳の無意識は休んでいる時も答えを探し求めて活動しています。そこからひらめきを生み出すには、非常に多くの情報と情報のつながりが必要です。そしてある情報のつながりがひらめきになります。ホンダジェットの藤野氏は、以前翼の上にエンジンを置いた飛行機の論文を読んでいました。しかしその時は特に強い関心を持ちませんでした。しかし潜在意識にあったその情報が、「どうしたら良い飛行機がつくれるのか?」という心の中の問いかけに対してホンダジェットと結びついて閃いたのです。
 

つまり必要なのは多くの情報量です。そのためには様々なことに興味を持つ必要があります。情報を求めていると、飛んでいる電波にスイッチを合わせるように必要な情報が入ってきます。さらに情報収集と合わせて、いろいろな人の意見が発想を刺激します。

多くの人と会話することが効果的なのは、違う意見を聞くことで潜在意識にある考えが顕在化するからです。そのためには多くの全く違う人と、弱い絆でつながっているのが望ましいです。そこから様々な情報が入ってきて、無意識下の膨大なネットワークを構築します。
 

副業の効果

その点で、近年話題となっている副業は、本業に影響を与えない程度の軽い負荷であれば、今までとは違うネットワークが手に入り、今までとは異なる情報が入手できるメリットがあります。例えば

  • 情報のインプットが増える
  • 様々な異なる意見を聞く
  • 討論で反対意見を聞く

このようなことが副業で行われれば、脳の情報処理量が増え、本業にもプラスの効果が見込まれます。また2か所で働くことで脳を酷使することになり、脳が疲れてひらめきが生まれやすくなります。
 

組織のアイデアフィルター

 

アイデアの絞り込む

もしアイデアを出すことが目的であれば、今まで述べたことを深めていけば、斬新なアイデアを出せるようになると考えます。しかし現実には組織の中でアイデアを選択し、事業や製品にしなければなりません。このアイデアの絞り込みが難しい作業です。
 

スティーブ・ジョブズは
「本当に難しいのはよいアイデアをつぶすことだ」
と語っています。そして革新的なアイデアは欠点も多くあります。そして他にも欠点の少ないアイデアもあります。その中で、本当に核となるアイデアを残して、他の「良いアイデアを捨てる」ことが必要です。
 

集団での意思決定の問題

このどのアイデアを残して、どのアイデアを捨てるかは、意思決定にかかわる人間の考え方と意志、そして企業文化によります。
 

ソニー創業者の井深大氏は、カラーテレビの開発で他社に後れを取りました。ブラウン管の方式を他社が採用していたシャドーマスクはやりたくないと、パラマウントが所有していたクロマトロン方式を導入しました。クロマトロン方式のカラーテレビは、画像は明るく鮮明でしたが品質は安定せず、販売価格19万8千円のカラーテレビの製造原価が40万円以上になってしまいました。毎月赤字を出し続けるクロマトロン方式に対して、ソニーの宮岡氏は3本の電子銃を水平に並べるトリニトロン方式の原理を発見しました。

井深氏は、まだ海のものとも山のものともわからないトリニトロン方式に対して、「これは筋の良い技術」と判断し、開発を決定、その結果トリニトロン方式のソニーのテレビは世界中で高い評価を受け、最盛期は世界のテレビの40%を生産し、ソニーを世界最大のテレビメーカーにしました。この井深氏のいう「筋の良い技術」とは井深氏の勘(感性)でした。井深氏は「筋の悪い技術でも腕ずくでやれば解決できるが、腕ずくでやると後から問題が出てくる」と言っています。これは今まで数々の技術開発を行ってきた井深氏の経験から磨かれた感性によるものでした。

図8 SONY WEGA  (wikipediaより)

図8 SONY WEGA (wikipediaより)

実際私の経験でも製品開発を20年近く行っていると、どの程度冒険するとどのくらい開発が大変かある程度予想できるようになりました。経験の浅い頃は新機種を開発する際にあれもこれも欲張って新しいことを取り入れて、開発に時間がかかり品質が安定するまで非常に苦労しました。しかし経験を積むと、どの部分が商品として重要なのでリスクを取って技術的に冒険して、どの部分はそれほど重要の機能でないので技術的な冒険は避け、既存の安定した技術を使うのか判断できるようになりました。

一方、井深氏のような創業者でなく、大勢の関係者が集まって長所、短所を比較しながら意思決定を行った場合、尖った判断は難しくなります。そうなると「トリニトロン」のような製品を出すことは容易ではありません。
 

参考文献

「柔軟的思考」 レナード・ムロディナウ 著 河出書房新社
「アイデア・ハンター」 アンディ・ボイトン、ビル・フィッシャー 著 日本経済新聞出版社
「井深大の世界」 井深大 著 毎日新聞社
「大空に賭けた男たち」 杉本貴司 著 日本経済新聞出版社
 

経営コラム ものづくりの未来と経営

人工知能、フィンテック、5G、技術の進歩は加速しています。また先進国の少子高齢化、格差の拡大と資源争奪など、私たちを取り巻く社会も変化しています。そのような中

ものづくりはどのように変わっていくのでしょうか?

未来の組織や経営は何が求められるのでしょうか?

経営コラム「ものづくりの未来と経営」は、こういった課題に対するヒントになるコラムです。

こちらにご登録いただきますと、更新情報のメルマガをお送りします。
(登録いただいたメールアドレスは、メルマガ以外には使用しませんので、ご安心ください。)

経営コラムのバックナンバーはこちらをご参照ください。
 

中小企業でもできる簡単な原価計算のやり方

 
製造原価、アワーレートを決算書から計算する独自の手法です。中小企業も簡単に個々の製品の原価が計算できます。以下の書籍、セミナーで紹介しています。

書籍「中小企業・小規模企業のための個別製造原価の手引書」

中小企業の現場の実務に沿ったわかりやすい個別製品の原価の手引書です。

基本的な計算方法を解説した【基礎編】と、自動化、外段取化の原価や見えない損失の計算など現場の課題を原価で解説した【実践編】があります。

ご購入方法

中小企業・小規模企業のための個別製造原価の手引書 【基礎編】

中小企業・小規模企業のための
個別製造原価の手引書 【基礎編】
価格 ¥2,000 + 消費税(¥200)+送料

中小企業・小規模企業のための
個別製造原価の手引書 【実践編】
価格 ¥3,000 + 消費税(¥300)+送料
 

ご購入及び詳細はこちらをご参照願います。
 

書籍「中小製造業の『製造原価と見積価格への疑問』にすべて答えます!」日刊工業新聞社

書籍「中小製造業の『製造原価と見積価格への疑問』にすべて答えます!」
普段疑問に思っている間接費・販管費やアワーレートなど原価と見積について、分かりやすく書きました。会計の知識がなくてもすらすら読める本です。原価管理や経理の方にもお勧めします。

こちら(アマゾン)から購入できます。
 
 

 

セミナー

原価計算と見積、価格交渉のセミナーを行っています。

会場開催はこちらからお願いします。

オンライン開催はこちらからお願いします。
 

 

簡単、低価格の原価計算システム

 

数人の会社から使える個別原価計算システム「利益まっくす」

「この製品は、本当はいくらでできているだろうか?」

多くの経営者の疑問です。「利益まっくす」は中小企業が簡単に個別原価を計算できるて価格のシステムです。

設備・現場のアワーレートの違いが容易に計算できます。
間接部門や工場の間接費用も適切に分配されます。

クラウド型でインストール不要、1ライセンスで複数のPCで使えます。

利益まっくすは長年製造業をコンサルティングしてきた当社が製造業の収益改善のために開発したシステムです。

ご関心のある方はこちらからお願いします。詳しい資料を無料でお送りします。

 

]]>
https://ilink-corp.co.jp/7084.html/feed 0
ロボットは人の仕事を奪う? ~産業ロボットの歴史と最新のロボット技術~ https://ilink-corp.co.jp/6847.html https://ilink-corp.co.jp/6847.html#respond Tue, 06 Jul 2021 23:54:12 +0000 https://ilink-corp.co.jp/?p=6847 No related posts. ]]> 3年前に訪問した中国 湖南省のプレスメーカーは、日本の中小企業と同様に人が設備を動かしていました。今、全てのラインにロボットが導入され、自動化されました。

中国ではロボットの導入が急速に進み、日本を追い越す勢いです。このロボット化が進めば、製造現場の人の仕事はどうなるでしょうか?

そもそも産業ロボットとはどのようなもので、どうして日本で発展したのでしょうか?そしてこれからロボットはどのように進化するのでしょうか?

産業用ロボットの歴史と最新のロボット技術から、これからのものづくりを考えます。
 

産業用ロボットの歴史

 

原点はからくり人形

人の形をした機械は、日本のからくり人形や西洋のオートマタなどが中世に作られていました。中でも日本のからくり人形は独自の発展を遂げ、江戸末期に作られた田中久重の「弓曳童子」などは自働機械と呼べるほど精密で複雑な動作を実現しました。

オルガンを演奏するオートマトン(Wikipediaより)

オルガンを演奏するオートマトン(Wikipediaより)


 

弓曳童子(Wikipediaより)

弓曳童子(Wikipediaより)

一方「ロボット」という言葉は1920年にチェコの作家カール・チャペックの戯曲「R.U.R. ロッサム・ユニバーサル・ロボット会社」で初めて使われました。

SF小説でのロボット三原則

1930年にアメリカのSF作家アイザック・アシモフが「I, Robot (私はロボット)」を発表し、その中で以下のロボット三原則を示しました。

  • 人間に害を与えない
  • 人間の命令に従う
  • 自らの存在を守る

産業用ロボットとは

このようにロボットは、人型の自働機械というイメージがあります。しかし、世界で最も広く使用されているロボットは、人とは全く異なる形の産業用ロボットです。

産業用ロボットは、厳密にはティーチングプレイバックという方法で動作する機械を指します。国際標準化機構(ISO)では「3軸以上の自由度を持つ、自動制御、プログラム可能なマニピュレーター(腕)」と定義しています。

産業用ロボットは、主に自動車や電子部品を生産する工場などで使用されています。自動車工場では、スポット溶接、ボディ塗装、部品取り付けなどに使われています。人間が行うには、単調な繰り返し動作、重量物の運搬などや、霧散している塗料を吸い込むなど、体に負担の大きい作業や作業環境の場合、作業者への負担軽減や作業ミスの削減、品質安定の面からも用いられています。

産業用ロボットの市場は、富士経済研究所の調査によると、2019年の業務・サービスロボットの世界の市場規模が1兆9819億円で、2025年には2019年の2.2倍、2兆2727億円になると予想しています。

ロボット産業全体では、国立研究開発法人 新エネルギー・産業技術総合開発機構 (NEDO) によれば、2035年には9.7兆円の市場規模になると予想しています。特に今後はサービス分野で著しい成長が見込まれています。

ロボット産業の将来市場予測(出典:NEDOホームページ)

ロボット産業の将来市場予測(出典:NEDOホームページ)


 

この産業用ロボットで日本企業は世界シェア50%(2012年)と圧倒的な強さがあります。

代表的な日本メーカーは、安川電機、ファナックで、これにスイスのABB、ドイツのKukaの4社が世界の4大ロボットメーカーと呼ばれています。日本では他に川崎重工、不二越、エプソンなどがあります。

オムロンは、世界第10位のアメリカのアデプトテクノロジー社を2015年に買収しました。一方4大ロボットメーカーのひとつKukaは2016年に中国の家電メーカー美的集団に買収されました。

この産業用ロボットは構造から以下の種類に分類されます。

  1. 直交座標型
    X(前後),Y(左右),Z(上下)の3方向に水平移動するロボット
  2. 円筒座標型
    X(前後),Z(上下)する機構を旋回するロボット
  3. 極座標型
    X移動(前後)する機構を、左右旋回と上下旋回するロボット
  4. 多関節型 (水平 (スカラ) 型)
    水平方向に旋回する2軸を持ち、先端が上下するロボット
  5. 多関節型 (垂直型)
    6軸を制御することで人間の腕の動きに近いロボット
  6. パラレルリンクロボット
    リンク機構を並列に配列し、小型のワークを高速で搬送できるロボット

 

初期のロボット

1956年、31歳のエンゲルバーガ氏は、あるパーティーでG.C.デボル氏と出会いました。デボル氏は、ティーチング(教示)とプレイバック(再生)によって動作する「プログラムド・アーティクル・トランスファー」(プログラム可能な物品搬送装置)を特許申請していました。デボル氏はエンゲルバーガ氏にこの発明を説明したところ2人はすぐに意気投合しました。エンゲルバーガ氏は出資者を探し出して1959年にプロトタイプを完成させます。

ユニメートの外観 (Wikipediaより)

ユニメートの外観 (Wikipediaより)


 

これにゼネラルモーターズ社が興味を示し、ダイキャストマシンのワークの取出しに使用しました。エンゲルバーガ氏は、1961年にデボル氏と共同でユニメーション社を設立、1962年には世界初の本格的な産業用ロボット「ユニメート」を完成させました。

エンゲルバーガ氏は、人間の腕の代わりに仕事をするこの機械にアシモフの「I,Robot」からロボットと名付けました。しかし「ユニメート」はGM社のダイキャストマシンのワーク取出しに使われた程度で、その後の普及は進みませんでした。

アメリカの自動車工場では、労働者は溶接、プレス加工などの職能別に組織された労働組合に所属していました。 溶接ラインに「ロボットを導入すれば溶接工が職を失う」ため、労働組合はロボットの導入に強く反対しました。
 

アメリカで普及しなかったロボット、日本で爆発的に広がる

1966年エンゲルバーガ氏は、日本で産業用ロボットの講演を行いました。「30人程度だろう」と思われた講演会には200人あまりの経営者が聴講し、講演終了後の質疑は2時間も続きました。

高度成長期にあった当時の日本は、将来若年労働力が不足する恐れがありました。それを補うためにロボットに高い関心がありました。また当時アメリカの工業技術は世界の最先端にあり、その技術をコピーすれば日本で新事業を興すことができました。

こうして日本のロボット熱は高まり、ピーク時は200社もの企業がロボットに取り組みました。

こうした中、1973年には川崎重工が日産自動車、トヨタ自動車のスポット溶接ラインにユニメートを納入しました。日本ではアメリカと異なり労働組合は、企業別組合で、しかも終身雇用制の為、ロボットを導入して「仕事がなくなっても他の仕事に就く」ことができました。

発達するセンサ、エレクトロニクス技術を追い風に発展

実際はロボットを導入することで、作業者は危険、きつい、汚い仕事から解放される一方、ロボットの調整のような新たな仕事が生まれました。

当時、日本がロボットの開発に有利だったのは、ロボットに必要なエレクトロニクス、コンピューター、ソフトウェア、サーボ、センサなどの技術が大きく進歩し、以前は困難だった「高性能なロボットを製造し、使いこなすことが容易になった」ことでした。

1968年に川崎重工はユニメーション社より技術導入し「ユニメート」を国産化しました。しかしユニメートは様々な問題点があったため、川崎重工は独自にユニメートを改良しました。

さらに安川電機、スター精機、会田鉄工(現アイダ)、石川島、不二越、東京計器、クロガネクレーンなど多くのメーカーがロボットの開発に参入しました。

電子部品実装機もロボットの仲間

松下電器はプリント基板に電子部品を挿入するパナサートを開発しました。このとき電子部品実装機も産業用ロボットに分類されました。今でもロボット上の統計には電子部品実装機が含まれています。しかし汎用的な産業ロボットに対し、プリント基板の製造に特化した電子部品実装機を産業用ロボットの市場に含めるのは問題があるため、統計によっては産業用ロボットの市場から電子部品実装機を除外しています。
 

こうしてアメリカで生まれた産業用ロボットは、日本で大きく発展しました。

ロボットは高度成長期に人手不足と生産量の拡大に迫られた自動車メーカーによって、スポット溶接、アーク溶接、ワーク取出しなどに導入され、日本は稼働台数が世界一のロボット王国になりました。
 

ロボットの電動化と様々な分野への展開

 

こうして日本の工場に広く普及した産業用ロボットは、その後センサーやエレクトロニクスの発展により、より複雑で高度な作業ができるようになりました。

油圧サーボから電動化へ

当初ロボットの駆動は油圧サーボでした。その後、サーボモーターの性能が向上し、ロボットの駆動は油圧から電動化されました。これにより、より複雑で正確な制御が可能になりました。

1972年にはマイクロプロセッサが開発され、1970年にはプログラマブル・ロジック・コントローラ(PLC 通称シーケンサ)が発売されました。PLCの出現で、これまで固定されたリレー回路での制御がPLC内部のプログラムに代わり、制御の変更が格段に容易になりました。そして現場の技術者が短時間でロボットの動作を変更できるようになりました。

1970年代後半には、DCサーボモーターでロボットの可変速運転ができるようになり、「ハーモニックドライブ」のような高減速比の減速機が登場したことでロボットの位置決め精度が向上しました。位置検出にはインクリメンタルエンコーダーが採用され、今まで起きていた速度検出器の断線による暴走がなくなりました。

ロボットでは後発の安川電機は、スウェーデンASEA社垂直多関節ロボットIRB-6をお手本にサーボモーターを使用した電動式のMotomann L-10を開発しました。

電動式のロボットは油圧サーボ方式に比べ安価で使いやすいため、自動車部品のアーク溶接用に多くの中小企業が導入しました。

ファナックは、工作機械用NC技術を応用してロボットに参入しました。特に天井走行型のロボットを開発して複数の工作機械の間のワークをロボットで搬送し、機械加工の自動化・無人化を実現しました。
 

溶接以外の分野へ広がり

多関節ロボットは、事前にティーチングした位置へ正確に停止すればよいため、絶対的な移動距離の正確さは必要ではありません。しかし停止位置の繰り返し精度は必要です。

しかしネジ締めに多関節ロボットを使用すると、先端の剛性が十分でないため停止位置の繰り返し精度が安定しないという問題がありました。これを解決するために山梨大学の牧野洋教授はアームの剛性の高い水平多関節方式のスカラ型ロボットを開発しました。

1980年代、日本の半導体は好調でクリーンルーム内でウェハーを搬送するために発塵を極力抑えたロボットが求められていました。
繰り返し精度が高く発塵の少ないスカラ型ロボットが半導体工場に大量に導入されました。

こうして産業用ロボットは用途に合わせて様々に進化していきました。
 

ロボットの様々な用途

 

こうして高性能になったロボットは、これまで人が行っていた作業にも導入されるようになりました。

スポット溶接

初期の溶接ロボットはユニメートのような油圧サーボ駆動の極座標ロボットでした。
その後、より複雑な動作を実現するために電動化されました。しかし重い(100kg)溶接ガンを短時間に移動し正確に位置決め(±0.25mm)するには、モーターの停止時間の短縮と停止時の振動抑制が必要でした。
ロボットメーカーの要求にこたえるためモーターメーカーは現代制御理論を用いてサーボモーターの制御の高度化に取組み、制御技術は飛躍的に進歩しました。

自動車製造ラインに配備されたKUKA製産業用ロボット (Wikipediaより)

自動車製造ラインに配備されたKUKA製産業用ロボット (Wikipediaより)


 

アーク溶接

アーク溶接は、ロボットアーム先端の溶接部がワークに沿って連続的になめらかに移動して溶接します。ティーチングは作業者が手動でロボットを動かすティーチングプレイバック方式で行います。

糊付け・シーリング

自動車の窓ガラスの接着のため、窓ガラスに接着剤を連続的に塗布するロボットです。ガラスの局面に沿って移動するロボットの先端部は一定の速度でないと接着剤の塗布量がばらついてしまいます。そのため現代制御理論を取り入れ、どのような角度でも一定の速度になるようにしてします。
 

ロボットの進化とソフトウェア技術

 

現在の産業用ロボットは、強力な磁石の開発、制御理論の発展により、さらに高性能になりました。

一方今後は、ロボットのハードウェアよりソフトウェアの重要性が高まっています。このソフトウェアについては、プラットフォームをオープン化する試みがされています。

モーターの進化と現代制御理論の発展

1982年にネオジウム(希土類)を使用した強力なマグネットが日本で開発され従来より小型で強力なモーターが実現できました。加えて巻き線方式を改良することでモーターの小型高出力化が加速しロボットの高速化が実現しました。

一方ロボットが高速化されると相対的にアームの剛性不足が起き振動が起きるようになりました。そこで従来のPID制御などの古典制御理論に対し、状態変数という概念を導入した現代制御理論がロボットの制御に使われるようになりました。

これはコンピューターの計算能力が飛躍的に高まったことで、現代制御理論を取り入れた外乱オブサーバーやフィルタなど様々な機能が可能になったことも要因です。これらの機能はサーボモーターと制御装置に一体化して組み込まれていてユーザーは手軽に利用できるようになりました。

この制御理論の進歩と、それを実現する電子回路、ソフトウェア技術の進歩は、目立たないところでロボットの性能向上に大きく貢献しました。
 

ソフトウェアへの比重の増加とオープン化

コンピューターの進歩によりロボットは複雑な動作や多くの機能が実現され、これを制御するソフトウェアの開発がロボット開発の中で高い比重を占めるようになりました。

一般的なWindowsやMacOSなどのOSはCPUは命令を逐次処理するためリアルタイムでの動作が保証できません。そのため高速で動作するロボットの制御には向いていませんでした。

そこで各ロボットメーカーはロボット制御に適した制御システムを独自に構築してきました。しかしロボットメーカーのソフトウェア開発費は増加する一方で、中にはソフトウェア開発費を回収できずロボットから撤退するメーカーも現れました。こうしてロボット業界の再編が進みました。

このような状況の中、ロボット開発のプラットフォームをオープンソースで行う取り組みが行われています。最初は大学などの研究機関でロボットを使用するために開発したミドルウェアをオープンソースにしたものが始まりで、それが商業分野にも使用されるようになりました。

ROS(Robot Operating System)

ROSはロボット用のソフトウェアプラットフォームで、OSではなく既存のOS上で動くミドルウェアやソフトウェアフレームワークです。

ROSはスタンフォード大学が開発した「Switchyard」が起源で、アメリカのウィローガレージ社が開発を引き継ぎ、2010年にリリース版が公開されました。その後、ROSの開発は「オープンソースロボット財団」が引き継ぎ、オープンソースソフトウェアとして世界中から多くの人々が開発に参加しています。

ROSが動作するOSはLinuxが中心で、一部はmacOS、Windows、Androidにも対応しています。ハードウェアの抽象化、低レベルのデバイス制御、汎用的な機能の実装、プロセス間のメッセージ通信、パッケージ管理などを行い、ソフトウェアの開発や実行のためのツールやライブラリも提供されています。

このROSはロボットアーム、ヒューマノイド、自動運転車やドローンなど様々なロボットに使われていて、次世代バージョン「ROS 2」の開発・リリースも始まっています。

OpenCV

OpenCV(Open Source Computer Vision Library)は、オープンソースのコンピューター・ビジョン・ライブラリで、画像や動画の処理に必要な、さまざまな機能が実装されています。BSDライセンスで配布されるため学術用途だけでなく商用目的にも利用できます。
Intelで開発され、その後、Willow Garageに開発が引き継がれた後、現在はコンピューター・ビジョンの技術開発を手掛けるItseezによって開発が進められています。

 OpenCVを使うと、主に以下のような機能を利用できます。

  • フィルタ処理
  • 行列演算
  • オブジェクト追跡(Object Tracking)
  • 領域分割(Segmentation)
  • カメラキャリブレーション(Calibration)
  • 特徴点抽出
  • 物体認識(Object recognition)
  • 機械学習(Machine learning)
  • パノラマ合成(Stitching)
  • コンピュテーショナルフォトグラフィ(Computational Photography)
  • GUI(ウィンドウ表示、画像ファイル、動画ファイルの入出力、カメラキャプチャ)

 

OpenCVアドオンの例を実行しているopenFrameworks (Wikipediaより)

OpenCVアドオンの例を実行しているopenFrameworks (Wikipediaより)


 

このようにOSやミドルウェア、画像処理がオープンソースで供給されるようになり、規模小さいメーカーでも高機能なロボットを開発できるようになりました。
 

力覚センサ

協働ロボットとは、強い力がかかった際にロボットを停止させ、人に危害を加えないようなロボットです。この時の力を検出するセンサが力覚センサです。力覚センサにはひずみゲージ方式、圧電方式、静電容量方式などがあり、ロボットにはXYZと回転3軸の合計6軸の力が測定できるセンサが使用されています。力覚センサのメーカーには、エプソン、サンエテックなどがあります。
 

協働ロボットによる利用範囲の拡大

 

ロボットの新たな活用として、人と一緒に作業する協業ロボットが注目されています。従来の産業用ロボットは大型かつ高速なため、人がロボットとぶつかれば重大な事故になります。そのため事故が起きないように安全フェンスや光電センサを使ってロボットの可動域内に人が入れないようにしていました。

一方先進国では大量生産の製品は減少し、多品種少量生産の割合が増加しています。今までのようにロボットが同じ製品を長い時間作ることができず、製品は頻繁に変わるようになりました。そこで頻繁に変わる製品に対応して人の作業をアシストするために人と同じエリアで動くことができるロボット(協働ロボット)が必要になってきました。

人と共存するロボット

このニーズに注目したデンマークのUniversal Robots社は、協働ロボットをいち早く開発しました。また掃除機ルンバを生んだiRobot社を創設したロドニー・ブルックスは、2008年にリシンク・ロボティクス社を設立し、協働ロボット「バクスター」と「ソイヤー」を発売しました。(しかしリシンク・ロボティクス社は、2018年10月に廃業しました。)

協働ロボットは、従来の産業用ロボットに比べスピードは遅く、人と接触しても自動的に停止するため安全です。外観も人とぶつかることを配慮して丸みを帯びたデザインになっています。

現在は、川崎重工のduAro2、カワダロボティクスのNEXTAGE、KUKAのLBR iisy、ABB YuMi、不二越のCZ10、ファナック CR-35iAなど各社が協働ロボットを発売しています。

協働ロボットの市場は富士経済によると2025年には日本で1,000億円、世界で5,900億円に成長すると予測されます。

一方日本ではロボットの安全に関する法改正が遅れたため、協働ロボットの導入はヨーロッパに比べ2~3年遅れています。

安全規格の改定

ヨーロッパに比べて遅れていた日本の安全規格の改定は、2013年末に労働安全衛生法が改正され、2015年にJIS B8433-2が制定されました。その結果、リスクアセスメントを行って危険がないと判定できれば、安全柵なしで協働ロボットを使用できるようになりました。

現在は a.のように柵はないけど人とロボットの作業領域は分けられています。今後は、b. のように人とロボットが協調して作業する領域を設けたり、c. のようにどの領域でも人とロボットが協調して作業すると考えられます。
 

a.柵を設置しないが協働ロボットと人間が働く領域は分けられている

a.柵を設置しないが協働ロボットと人間が働く領域は分けられている


 

b.協働ロボットと人間が一部の領域で協調して作業をしている

b.協働ロボットと人間が一部の領域で協調して作業をしている


 

c.協働ロボットが自由に移動し、人間の領域に入り込んで作業をしている

c.協働ロボットが自由に移動し、人間の領域に入り込んで作業をしている


 

協働ロボットの課題

恊働ロボットは今まで人は人、ロボットはロボットと分けられていた作業を、人とロボットが協調して作業を行うため、以下のような課題があります。

  1. 対象物が均一でない(大きさ、形状、固さ)
  2. ユーザー側にノウハウが無い
  3. 人が行う作業の自動化が困難
  4. 人に危害を加えない安全対策

これに対して、以下の取組が必要と考えられます。

  1. 対象物の認識と安定した把持
  2. 容易なロボットティーチングシステム
  3. 熟練作業者の動きの再現
  4. 接触検知と最適な制御

これを下記の表にまとめました。

課題 解決策 技術
対象物が均一でない 対象物の認識と安定した把持 力制御の進化
ユーザー側に運用ノウハウがない 容易なティーチングシステム
ロボット化が困難な作業 熟練作業者の動きの再現 AIの活用
人に危害を加えない安全対策 接触検知と最適な制御

 

人の作業を代替する双腕ロボット

現在多くのロボットメーカーが双腕ロボットを開発しています。その理由は、双腕ロボットは人に近い動作ができるため、今まで人が行っていた作業を代替できるからです。

スイスABB社のYuMiは、各アームが7軸、合計14軸の双腕ロボットです。可搬重量は 1アーム0.5kgと小さいものの位置決め精度は0.02mmと高く、重量も38kgと軽量です。限られたスペースで複雑な動きが実現できるため、画像検査では製品を様々な角度から検査して今までより正確な検査を行います。

また双腕にすることで片方のアームでワークを押さえ、片方のアームで組立てることができます。これにより従来は必要だった専用のワーク固定治具が不要になります。
 

今後求められる「人並みに器用な手先」

今後ロボットが安価で使い易くなっていくと、最も大変なのは人が行っている作業をどうやってロボットに移し替えるかということです。例えば、ビンの蓋を開けて、スポイトを使って中の液体を1cc取り出す作業は、人であれば片手でビンを持ち片手でふたを開けます。そして片手はビンを持ったままで、もう一方の手は、スポイトに持ち替え、液体をスポイトに吸わせます。

これをロボットが行うためにはふたを開く専用のロボットハンド、スポイト付きの専用のロボットハンドを用意し、作業中にロボットハンドを交換しなければなりません。この専用のロボットハンドの設計・製作と、専用のロボットハンドを使った作業のプログラミングがロボット導入の障害となっていました。

一方、ロボットハンドが5本の指であれば、人の手と同じようにロボットハンドを動かせば必要な作業ができます。そのためティーチングはとても簡単になります。あるいは人の指に印をつけて、カメラで作業を記録することで、そこから自動でプログラムをつくることもできます。

現在、医療用に様々な5本指の義手の開発が行われていています。これが実用化されれば、ロボットを5本指にすることで、これまで以上に人と同じ作業が可能になります。
 

協働ロボットの新たな活用例

 

以下に各分野での協働ロボットの活用事例を紹介します。

人とロボットの作業分担

ファナックでは、射出成型機のボールねじ(12~13kg)をベアリングを圧入する作業に自社の重可搬型協働ロボットCR-35iAを使用しています。協働ロボットはボールねじを保管
棚から取出し、ボールねじを圧入機の中で立てた状態で保持します。作業者はベアリングを圧入機にセットし圧入します。その際、圧入機のセンターにボールねじのセンターが来るようにロボットはボールねじを軽く支えています。

従来は男性作業者が行っていたボールねじの取出しとセットをロボットに置き換え、しかもボールねじをロボットが支えるため女性でも作業できるようになりました。しかも協働ロボットはフェンスが不要なため、作業スペースは従来と同じでした。

専用自動機の代わりにロボット

日立アプライアンスは、炊飯器の蓋の組立をUniversal Robots社の協働ロボットUR10 2台を使用して行っています。この工程は、今までは2人の作業者がセル生産を行っていました。しかし手作業では改善の限界が見えてきたため、自動化に取り組みました。

この工程を自動化する場合、従来は専用の自動機を開発していました。しかし自動機は安全柵が必要なためラインが長く、設備の立ち上げにも時間がかかりました。

そこで協働ロボット2台を導入し、1台で複数の組立工程を行うことで、コンパクトなラインを実現しました。ラインの費用は1,980万円と少ないため、稼働開始から2年2か月で投資が回収できます。

ロボットによるウサギ追い方式(1人巡回セル)

両替機や釣銭機を製造するグローリーは、組立工程を自動化するためにカワダロボティクスのNEXTAGEを導入しました。同社の製品は工程が多いため、従来のロボットでは、工程の数に応じて部品の供給装置を用意するため多くのスペースが必要でした。また多くの工程に分割するため、個々のロボットの作業時間の差が全体として大きなロスになりました。

そこで1台のロボットが全行程を行うようにして、このロボットが各工程を製品と一緒に巡回して製造するウサギ追い方式を導入しました。部品の供給部が各工程1箇所で済むためコンパクトなラインになりました。

一般的にはウサギ追い方式を導入すると、作業の遅れが作業者にプレッシャーとなり、焦りが生じて不良が多発します。しかしロボットは作業速度の差が少ない上、ロボットは焦らないのでることはありません。

検査時は、両アームで製品を持ち上げて、角度を変えて画像検査を行い、微小な表面の傷も正確に検査します。さらに様々な形状のワークを保持できるように、ワークを掴む際に爪が水平に移動するロボットハンドを開発しました。グローリーは、このノウハウを活用してロボットシステムインテグレーター事業(RSI)も行っています。

超低価格ロボットを使用

自動車部品メーカーのジヤトコ(株)は、中国Shenzhen Yuejiang Technologyの「Dobot Magician」を使って部品の整列作業に取り組んでいます。Dobot Magicianは14万円という超低価格のロボットです。そこで従来のロボットではコストがネックとなって自動化できない作業に導入する計画です。

例えば、生産に使用するボルトなどの部品をトレイに入れる作業は、従来はワークの種類と数が多いため人が行っていました。このような作業にDobot Magicianの導入を検討しています。

協働ロボットがたこ焼きをつくる

ハウステンボスでは、2018年7月にロボットがたこ焼きを焼く「OctoChef」がオープンしました。従来は2~3人の業務でしたが、OctoChefは従業員1人とロボット1台で実現しました。

人が具材の準備を行い、具材の投入、調理はロボットが行います。たこ焼きをひっくり返すのもロボットがピックを使って行います。ただし、うまくいかなかったり、ロボットの動作が間に合わない場合は、人が補助します。焼けたたこ焼きを器に入れる作業は人が行います。

このようにロボットが苦手な作業を人が行うことで、今までロボットの導入が困難な業務にロボットを導入しています。

ランドロイドはなぜ失敗したのか

ランドロイドは、セブン・ドリーマーズが2015年に発表した「洗濯物全自動折りたたみ機」です。大手家電メーカーなどが多額の出資を行い、注目を集めましたが2019年4月経営破綻しました。原因は2017年発売予定が延期を重ね資金がショートしたためでした。

ランドロイドは、洗濯物の種類をカメラが判別し、ロボットアームが衣類の種類に応じて折りたたみ、種類ごとに分けて収納する装置です。

しかし現在の認識技術、ロボットハンドでは人と同じ作業を完璧に行うのは困難です。

完璧にはできない前提で、人がアシストして目的を達成するなら、なおかつ価格に見合った性能ならば、結果は変わったと思います。しかしランドロイドのパートナー パナソニックとしては、そのような中途半端な製品は販売できませんでした。

ランドロイドの失敗は、事業として自動化に取り組む際に「どこまでのレベルを目指せばよいか」目標設定の難しさと、ベンチャー企業が大企業と提携することの相性の難しさを示しています。
 

ロボットは人の仕事を奪うのか

 

このように現在の産業用ロボットは、まだ完全に人の仕事を代替することはできません。これまでの産業用ロボットの進歩と今後の方向性は以下のようになります。現在は4, 5の段階です。

  1. アーム 溶接等 円筒型、極座標型
  2. 自由度の高いアーム 溶接、組立 多関節型
  3. 多機能なアーム 組立・検査 多関節型にセンサ、カメラ、多機能なハンド
  4. 2本のアーム 組立・検査 双腕型
  5. 認識制度の向上 AI、機械学習

ロボットアームの動きは正確に制御できるようになりましたが、人の手にあたるロボットハンドの性能は、まだ人に及びません。認識・判断の性能は現在のAIはまだ人に及びません。そのため「ロボットにできること」と「できないこと」は依然存在します。

ロボットが広く導入されても、ロボットができない仕事は人が行わなければなりません。

OctoChefでは、具材を切ったり、具材をトレイに並べたり、焼けたたこ焼きを器に盛るのは人が行っています。

このような作業までロボット化しようとすると、大変な労力がかかる上にトラブルも多発します。ロボットの活用においては、このロボット化する作業の見極めが極めて重要です。

進むロボット市場の2極化

今後ロボットは2極化が進むと考えられます。

ひとつはAIを活用して高度な画像認識を行い、人が行っている作業の多くを置き換える高度なロボットです。人からロボットに置変えることで、生産性や品質の向上が実現するため、価格がある程度高くても、大企業を中心に広く受け入れられていきます。

また人にとっては過酷な環境での作業もロボットに置き換えられていきます。高い温度や有機溶剤などの人に過酷な作業環境や、高所や水中などの人が行うには安全上の問題やコストが多くかかる作業は、ロボットの導入が進むと予想されます。

もうひとつは、Dobot Magicianのような低価格ロボットです。低価格のロボットが広く普及すれば、簡単な作業のロボットへの置き換えが進みます。スピードは遅くてもロボットは休まず作業するため、高い費用対効果が得られます。

このようなロボットのプログラミングは、現場の作業者が簡単にできる必要があり、ダイレクト・ティーチングや使いやすいプログラミングツールが必要です。

どうやって使うかが問題

今後ロボットは様々な機能を持つと予想されます。そのような高度な機能や画像処理・AIも外部のライブラリをうまく活用すれば、中小企業でも安価に利用できるようになるでしょう。

一方「ロボットを使った方がうまくいく作業」と「人が行った方がうまくいく作業」は依然存在します。

そのため、ロボットを導入するかどうかは、この点に注意して費用対効果を考慮して見極める必要があります。つまり「ロボットをどうやって使用するか」が重要になります。

これについて国もロボットシステムインテグレーター(RSI)の重要性を訴え、様々な支援策を打ち出しています。今後は、ロボットの特徴をよく理解した上で、適切にロボットを導入することが企業の競争力の源泉となるでしょう。

単純作業から解放

今後ロボットの導入が進めば同じ作業を繰り返す単純作業はロボットが行い、人が行うのは「原料を取ってきて袋から開けて装置に入れる」というようなロボットに向いていない作業か、「ロボットの調整をしたり、ロボットの導入を計画したり」といった高度な仕事になります。

一方、すべての作業者がこういった高度な仕事ができるわけではありません。

将来はこういった仕事に適応できない人材の対処が問題になるでしょう。

参考文献

「ロボットテクノロジー」 日本ロボット学会 著 Ohmsha社
「日経ものづくり2017年5月号」
「日経ものづくり2018年10月号」
「産業用ロボット技術発展の系統化調査」 楠田善宏 著 国立博物館 技術の系統化調査報告 第4集

 

経営コラム ものづくりの未来と経営

人工知能、フィンテック、5G、技術の進歩は加速しています。また先進国の少子高齢化、格差の拡大と資源争奪など、私たちを取り巻く社会も変化しています。そのような中

ものづくりはどのように変わっていくのでしょうか?

未来の組織や経営は何が求められるのでしょうか?

経営コラム「ものづくりの未来と経営」は、こういった課題に対するヒントになるコラムです。

こちらにご登録いただきますと、更新情報のメルマガをお送りします。
(登録いただいたメールアドレスは、メルマガ以外には使用しませんので、ご安心ください。)

経営コラムのバックナンバーはこちらをご参照ください。
 

中小企業でもできる簡単な原価計算のやり方

 
製造原価、アワーレートを決算書から計算する独自の手法です。中小企業も簡単に個々の製品の原価が計算できます。以下の書籍、セミナーで紹介しています。

書籍「中小企業・小規模企業のための個別製造原価の手引書」

中小企業の現場の実務に沿ったわかりやすい個別製品の原価の手引書です。

基本的な計算方法を解説した【基礎編】と、自動化、外段取化の原価や見えない損失の計算など現場の課題を原価で解説した【実践編】があります。

ご購入方法

中小企業・小規模企業のための個別製造原価の手引書 【基礎編】

中小企業・小規模企業のための
個別製造原価の手引書 【基礎編】
価格 ¥2,000 + 消費税(¥200)+送料

中小企業・小規模企業のための
個別製造原価の手引書 【実践編】
価格 ¥3,000 + 消費税(¥300)+送料
 

ご購入及び詳細はこちらをご参照願います。
 

書籍「中小製造業の『製造原価と見積価格への疑問』にすべて答えます!」日刊工業新聞社

書籍「中小製造業の『製造原価と見積価格への疑問』にすべて答えます!」
普段疑問に思っている間接費・販管費やアワーレートなど原価と見積について、分かりやすく書きました。会計の知識がなくてもすらすら読める本です。原価管理や経理の方にもお勧めします。

こちら(アマゾン)から購入できます。
 
 

 

セミナー

原価計算と見積、価格交渉のセミナーを行っています。

会場開催はこちらからお願いします。

オンライン開催はこちらからお願いします。
 

 

簡単、低価格の原価計算システム

 

数人の会社から使える個別原価計算システム「利益まっくす」

「この製品は、本当はいくらでできているだろうか?」

多くの経営者の疑問です。「利益まっくす」は中小企業が簡単に個別原価を計算できるて価格のシステムです。

設備・現場のアワーレートの違いが容易に計算できます。
間接部門や工場の間接費用も適切に分配されます。

クラウド型でインストール不要、1ライセンスで複数のPCで使えます。

利益まっくすは長年製造業をコンサルティングしてきた当社が製造業の収益改善のために開発したシステムです。

ご関心のある方はこちらからお願いします。詳しい資料を無料でお送りします。

 

]]>
https://ilink-corp.co.jp/6847.html/feed 0
なぜアイデアが出ないのか?製品開発と発想法の関係 https://ilink-corp.co.jp/6457.html https://ilink-corp.co.jp/6457.html#respond Fri, 23 Apr 2021 03:13:51 +0000 https://ilink-corp.co.jp/?p=6457 No related posts. ]]> 中小企業が自社製品を開発する際に、アイデアを出すために社員と経営者が集まって会議をしましたが、具体的な製品のアイデアが出ないで終わってしまいました。
異業種交流会に参加して、異分野の人と様々な意見交換をしましたが、内容は雑談ばかりで具体的な製品にはつながりませんでした。
 

製品に大きな問題が発生して対策会議を開きました。しかしメンバーの発言は少なく、良いアイデアも出ません。結局、対策は社長が決断せざるを得ませんでした。
 

図1 アイデアを出すための会議

図1 アイデアを出すための会議


 

新製品や新事業には新しいアイデアが必要です。そのために会議を開いたり、様々な発想法に取り組んだりします。しかし会議でブレインストーミングを行ってもなかなか成果が上がりません。アイデアを出すのには、スティーブ・ジョブズのような才能がないとムリなのかと思ってしまいます。
 

実は新製品を開発する場合、アイデアを出すためには必要な手順があります。そして最初に行うことはアイデア出しではありません。ではどのような手順で行い、どのような方法でアイデアを出すのか、製品開発のプロセスと発想法について考えます。
 

アイデア発想から製品の実現までの流れ

製品開発とアイデア発想のプロセスを図2に示します。
最初に新製品はどのようなことを実現するのか、達成すべきゴールを明らかにします。これは、言い換えれば現在の製品やサービスでは満たされていない問題を発見することです。問題が見つかり、ゴールが分かれば、それに対して現在の状態を分析します。
 

今がどのような状態なのか、現状が分かれば、現状からゴールに至る道筋、つまり解決方法を考えることができます。この解決方法を考えるために必要なのがアイデア出しです。ゴールと現状の分析を行わずに、アイデア出しを行っても、解決すべき問題があいまいなためアイデアが出てきません。
 

アイデア出しを行い、アイデアがたくさん出ても解決できないことがあります。つまりアイデアは出たけれど、あと一歩が及びません。この一歩を飛び越えるのが「ひらめき」、あるいはセレンディピティと呼ばれるものです。ただし、ひらめいたアイデアは欠点だらけです。そこで欠点を克服して使えるようにする作業が必要です。
 

そしてアイデアを具現化するために設計作業に入ります。要求機能を詳細に分析し具体的に記述します。そしてシミュレーションやプリテストによりアイデアが実現可能なことを確認していきます。
 
図2 製品開発とアイデア発想のプロセス

図2 製品開発とアイデア発想のプロセス

図2 製品開発とアイデア発想のプロセス


 

問題は何か?問題発見と現状分析

問題を探すコツ

製品開発とは、従来の製品では満たされないことがあり、それを新しい製品で解決することです。今日ではこれが難しくなっています。なぜなら今では顕在化した問題点は、大抵何らかの解決策があるからです。顕在化した「顧客のニーズ」を探すのは容易ではありません。「顧客も気づいていない、満たされていないこと」を探さなければなりません。これには日常接している様々な事柄をより深く掘り下げなければなりません。
 

この「顧客も気づいていない、満たされていないこと」は、ブレインストーミングなどの発想法では見つかりません。発想法はアイデアを広く集めることはできますが、問題を深く掘り下げることはできないからです。では、どのようにすればよいのでしょうか。
 

ポイントは人です。満たされていないと感じるのは顧客です。満たされていないというのは顧客の感情です。「満たされていないこと」を発見するには、顧客の生活、人生観、感情などに踏み込んで、顧客も気がつかなかったことを探します。そのためには、以下の3つのポイントがあります。

  • 否定の精神
  • 論理的思考
  • 教養

 

(1)否定の精神

現状をすべて肯定しては、満たされていないものを発見できません。発明とは「現状に決して満足しない人」がします。まず自らが決して満足せず、否定の精神で今の世界を見ます。
 

【カーボンコピーに嫌気がさしたチェスター・カールソン】
世界初の乾式コピーを発明し、ゼロックスの生みの親チェスター・カールソンは、特許関係の事務所で来る日も来る日も特許関係の書類を手書きで複写していました。単調な作業に嫌気がさしたチェスター・カールソンは、仕事の傍らアパートで乾式コピーの実験に没頭し、4年後に世界で最初の乾式コピーに成功しました。

 

(2)論理的思考

発見した問題は解決可能なものでなければ、新商品にはなりません。それには、問題が論理的に解決できることです。問題には原因があり、その原因を除去すれば解決します。つまり論理的に解決可能です。しかし例えば、ある人が、原因が全くないのに、突然不機嫌になったり、機嫌がよくなったりする場合、これは解決方法がありません。つまり論理的に解決できない問題です。なぜ○○なのだろうか?と常に疑問を持ち、それを論理的に解く必要があります。
 

(3)教養

満足できないと感じるのは、人の感情です。この人の感情を理解するには、人に対する深い洞察が必要です。そのために必要なのが「教養」です。私たちの考え方や感情は、今まで育ってきた社会や文化の影響を強くうけます。この文化は、国や地域で異なります。個人個人も様々なタイプや考え方があります。問題を発見するには、こういった文化や歴史、人間心理に対する幅広い知見や深い洞察が教養です。教養を高めるには、人文系の様々な学問や、歴史や文学、芸術などを学び、それを咀嚼して自分の考えや価値観を築く必要があります。
 

【まだ気づいていない問題を見つけることは、顧客の先にある未来を考えること】
佐藤「クライアントの問題を解決しようとするとき、マーケティングの発想でいうと、これまでこのクライアントが何をしてきたのか確認するんです。そうやって過去の情報を整理しながら、一歩先の「未来」を示す。その人がいる地点の、ちょっと先を答えとして当てる作業なんですよ。でもそういう問題解決の仕方だと、過去からの流れの延長線上でしかないので、アイデアとしての爆発力がない。大きく飛躍はできないんです。自分の理想としては、まずポーンと先を見ちゃうんですね。」
松井「少し先でなく、何段階か後の『未来』を見る?」
佐藤「そうです。現状の問題に対する答えではなく、先にいくつも答えを想像してしまう。中略
ちょっと先の未来を予測して、今の課題を見つける。まず答えをイメージして、それに最も合う質問を逆算しているから、その問題は必ず解けるんですよ。説明した相手には、『なんで答えを知っているんだ?』とびっくりされますね。」
(参考文献1)

 

製品開発では問題が見つかった後、その答えに市場があるかどうかを考えなければなりません。また市場があっても、自社が参入できる市場かどうかというビジネスの視点での判断が必要です。事業化を前提として問題を判断する時、以下の点は確認が必要です。

  • 資金、人員など体制
  • 生産のノウハウや技術
  • 販売体制

 

今まで誰も気づかなかった市場に新たな製品を提供することは、競争のないブルーオーシャンでの事業です。しかしその製品が他社でも容易に作ることができるものであれば、すぐに多くのライバルが現れ、短期間にレッドオーシャンになります。それでも優位性を維持するためには、競合に負けないスピードで大量に商品を供給して市場占有率を高めます。そのためには大量の広告宣伝を行ってブランドを認知させる必要があります。さらに製品開発を継続して、競合の追従を振り切らなければなりません。
 

一般消費者向けの商品では、1社で市場を独占しているものは滅多になく、人気のある商品は必ず競合があります。このような時、特許や商標で市場の独占を維持できることはありません。なぜなら、大抵の特許は、競合によって特許を迂回する方法が発見されるからです。
 

現状分析(リサーチ①)

満たされないことが見つかった場合、最初のリサーチを行い、その答えが本当にまだ世の中にないのか調査します。インターネットや新聞、雑誌等の情報源から、答えがすでに商品化されていないか、調べます。さらに別の事業分野では、同様の問題が解決されていないか、調べます。特にニーズが顕在化していて、既存の技術で解決可能な問題は、すでに解決策があるか、誰かが解決策に取り組んでいる可能性があります。最初のリサーチでそのような情報が見つかれば、その問題には取り組まない方が賢明です。
 

ゴールはどこか?何をしたいかの明確化

要求を言語化する

問題が見つかれば、ゴールを具体的にイメージします。「どのような状態になれば問題が解決したといえるのか」達成すべきゴールの姿をイメージします。そして要求機能を言葉で書き表します。数値化できるものは数値化します。
 

問題がシンプルであれば、この段階で必要な要求機能はすべて表すことができます。複雑な問題の場合、後でさらに深くリサーチを行い、概要設計をしないと要求機能がすべては決まりません。その場合は、この段階では最低限の「これだけは実現しなければ目的が達成できない」という機能を書きます。
 

現状分析(リサーチ②)

要求機能が明確になれば、これを実現する方法を探します。この段階で本当に実現する方法がないのか2回目のリサーチを行います。問題がシンプルであれば、最初のリサーチで具体的な方法もリサーチします。
 

この問題の発見と具体的なゴールの決定は、現状を深く洞察して考える作業です。これは極めて個人的な作業です。会議で大勢が議論すれば、いろいろな考えは出ますが、深い洞察に至りません。製品開発において、ここが不十分でゴールと要求機能があいまいであれば、その後のアイデア出しでアイデアが発散してまとまらなくなります。
 

アイデア出し、実現方法の探求

問題とゴールがはっきりしたらアイデア出しを行います。この段階で図2に示すように現在のスタート地点とゴールははっきりしました。しかし、ゴールへ至る道筋が分かっていません。この道筋を発見するのが発想法です。
 

発想法とその特徴

実際は現在の地点とゴールが分かっても、どのようにすればゴールにたどり着くのか分かりません。これは干草の山の中から針を見つけるようなものです。このゴールへの道筋を探り当てる方法は、以下のようなものがあります。
 

【試行錯誤法】

手当たり次第に思いつくものをすべて行う方法です。干草の山から針を見つけるのであれば、干草を1本1本調べます。発明王エジソンは、電球のフィラメント材料を発明する際、6,000種類もの材料を炭にしました。最初は木綿の糸から知人のヒゲまで燃やしたそうです。
 

ある日、偶然机の上にあった竹の扇子に目が留まり、フィラメントにしてみると200時間灯りました。そこでエジソンは当時の金額で10万ドルをかけ、竹の材料を探すために20人の竹取ハンターを世界中に派遣しました。このように発明には熱狂的な勤勉さで努力を惜しまなかったエジソンは、一つの発明に平均で7年の歳月を費やしていました。
 

図3 1879年にメンロパークでのデモンストレーションで使われた電球
(ウィキペディアより)

図3 1879年にメンロパークでのデモンストレーションで使われた電球
(ウィキペディアより)


 

発想を引き出すには、二つの要素がカギとなります。ひとつは言葉です。人は言葉で思考し、言葉で論理を考えます。例えば、AならばB、BならばC、ならばAならばCと思考します。できるだけ多くの言葉を挙げて、その言葉をきっかけとしてできる限り多くのアイデアを出します。
 

もう一つは、絵などのイメージです。言葉の意味するものを図や写真で表すと対象のイメージが具体化します。あるいは、関係する言葉をグループにまとめたり、言葉同士の関係を図で表すことで情報が整理されて、アイデアが生まれやすくなります。
 

この試行錯誤法は、手当たり次第に思いつくものを試す方法です。図4に試行錯誤法のプロセスを示します。最初に課題から様々なアイデアを考えて、そのうちで1のアイデアを試します。それでダメだったら、次に2のアイデアを試します。それでダメだったら3のアイデアを試します。だったら最初からもっと多くのアイデアを出して、その中から良いアイデアを選択すれば、ゴールに達する時間を短縮できます。そこで最初からもっと多くの方法を出すために、様々な方法があります。
 

図4 試行錯誤法のイメージ

図4 試行錯誤法のイメージ


 

【ブレインストーミング】

アメリカの広告代理店の副社長A.F.オズボーンが発案した発想法で、自由奔放にアイデアを出すことで、アイデアの量を増やすことで、良いアイデアを出す方法です。
ブレインストーミングでは、以下の4つのルールを守らなければなりません。

  • 批判厳禁
  • 自由奔放
  • 大量生産
  • 結合・便乗

 

図5 ポストイットがよくブレインストーミングで使われる(wikipediaより)

図5 ポストイットがよくブレインストーミングで使われる(wikipediaより)


 

【ブレインライティング】

ドイツのホリゲルが開発した方法です、発言の際に退任への気兼ねや思いやり、遠慮などが自由奔放な発言の障害になる事から、発言の代わりに紙に書きつける方法です。前の人が書いた意見に対して、制限時間内に新たに意見を書くため、新たなアイデアを引き出すことができます。
 

図6 ブレインライティング (Wikipediaより)

図6 ブレインライティング (Wikipediaより)


 

【チェックリスト法】

ブレインストーミングでアイデアを出しやすくするためにA.F.オズボーンが考案した方法です。
 

表1 チェックリスト法

転用 他に使い道はないか?
応用 他からアイデアを借りられないか?
変更 変えてみたらどうか?
拡大 大きくしてみたらどうか?
縮小 小さくしてみたらどうか?
代用 他のモノで代用できないか?
置換 入れ替えてみたらどうか?
逆転 逆にしてみたらどうか?
結合 組み合わせてみたらどうか?

 

【アルファベット法】

世界で初めて使い捨て替え刃の剃刀を交換したキング・ジレット氏が考案した方法で、アルファベットをAからZまで順に書き、その横に各文字を頭文字とする商品を書きます。そしてそれらを使う際の人間の行動の特徴やこうあったらよいという希望など思いつくままに書きます。そしてその解決策を考えます。
 

図式化して、発想を引き出す方法【特性要因図】

東京大学の石川馨氏が考案した方法で、中央に一本の線を引き、そこから枝分かれしながら、中骨、小骨などを書いていきます。形が魚の骨に似ているので、フィッシュボーンチャートとも呼ばれています。
 

図7 特性要因図(Wikipediaより)

図7 特性要因図(Wikipediaより)


 

【KJ法】

東京工業大学の川喜田二郎氏が考案した方法で、たくさんのカードにアイデアを書いてそれらをグループにまとめて、アイデアを引き出す方法で、ブレインストーミングとよく併用されます。
 

図8 KJ法

図8 KJ法


 

《KJ法の特徴》
KJ法のようなカードに書いて整理する方法は、日本で広く普及しました。その理由として、漢字は表意文字の為、少ない文字から容易にイメージできることがあります。表音文字の場合、文字を見ただけではイメージがわかず、毎回読まなければならないので、イメージわきにくい欠点があります。
KJ法について川喜田氏は、自著の方法のみが唯一KJ法と呼べるもので、これに正確に準じないKJ法から派生したものはKJ法と呼ばないと主張しています。川喜田氏の手法の特徴は、必ず集めたカードから結論を構築するボトムアップのやり方にこだわり、トップダウンからの結論は一切認めない点にあります。これは川喜田氏が野外科学(フィールドサイエンス)の専門であったため、KJ法は現地で収集したノイズの多い情報から結論を導き出す総合の方法だったからです。

 

【マインドマップ】

イギリスのトニープザン氏が考案した方法で、真ん中にテーマを書き、そこから多段の枝分かれによってアイデアを二次元に表現する方法です。
 

図9 マインドマップ(Wikipediaより)

図9 マインドマップ(Wikipediaより)


 

【パテントマップ】

解決したい技術に関連する特許を調べて図式化する方法です。アイデアを出しても他社の特許に抵触しては製品できません。そのため、製品開発・リサーチには特許調査が不可欠です。その調査した特許を図式化することで技術相互の関係がわかり、新たなアイデアを出すことができます。

 

発想法の長所

試行錯誤型が、限られた頭脳が何度も失敗を繰り返しながら答えに到達するのに対して、発想法を用いることで最初から非常に多くのアイデアの中から、ゴールに到達できる確率の高いものを選ぶことができます。図10に発想法の効果のイメージを示します。

(1)発想法

(1)発想法


(2)試行錯誤法

(2)試行錯誤法


図10 発想法のイメージ
 

発想法のポイントは

  • 多くの頭脳を使う
  • 時間を制限する
  • ブレイン・ライティングでは5分以内にアイデアを書かなければなりません。

  • ノルマ
  • カードに記入する方法では、一人何枚というノルマがあります。

  • ヒントから連想する 
  • オズボーンのチェックリストやジレットのアルファベット法のように発想の手助けにヒントを使います。

  • 分類・整理 
  • アイデアをまとめて、関係づけることで、あらたなアイデアを導きます。

  • 図式化 
  • 言葉の相互の関係を図で表すことで、新たなアイデアを引き出します。

 

TRIZ

TRIZは、旧ソ連海軍の特許審査官ゲンリッヒ・アルトシュラーが、膨大な特許を整理分析した結果から、技術課題を解決する原理を体系化したものです。創造的な活動を天才のひらめきから汎用的な方法論へと変えた方法として注目されました。一方、日本ではこれを使えば誰でも自動的に発明ができるという誤解が生じ、思うような結果が出なかったため、TRIZは使えないという誤解も生まれました。
 

図11 TRIZの概念

図11 TRIZの概念


 

このTRIZは40の発明原理がありますが、これを使うにはまず目の前の固有の問題を、TRIZで扱うことのできる一般的な課題に変換し、それを40の発明原理で解決し、その原理を固有の課題に落とし込む必要があります。この思考の上下運動が適切にできなければTRIZ をうまく活用できません。
 

表2 TRIZ40の発明原理

発明原理 発明原理
1 分割 21 高速実行
2 分離 22 災いを転じて福となす
レモンをレモネードにする
3 局所的性質 23 フィードバック
4 非対称 24 仲介
5 併合 25 セルフサービス
6 汎用性 26 コピー
7 入れ子 27 高価な長寿命より
安価な短寿命
8 釣り合い
(カウンタウェイト)
28 メカニズムの代替
もう一つの知覚
9 先取り反作用 29 空気圧と水圧の利用
10 先取り作用 30 柔軟な殻と薄膜
11 事前保護 31 多孔質材料
12 等ポテンシャル 32 色の変化
13 逆発想 33 均質性
14 曲面 34 排除と再生
15 ダイナミックス 35 パラメータの変更
16 部分的な作用
または過剰な作用
36 相変異
17 もう一つの次元 37 熱膨張
18 機械的振動 38 強い酸化剤
19 周期的作用 39 不活性雰囲気
20 有用作用継続 40 複合材料

 

一方TRIZを使えば、より確実にゴールに近づくことができます。試行錯誤法に対し、発想法が使えば、非常に多くのアイデアでゴールを取り囲むことができます。さらにTRIZはよりゴールに向いたアイデアを集めることができます。このTRIZは、米国IHS社(日本代理店 株式会社アイデア)が開発する『IHS Goldfire』と、Ideation TRIZ(I-TRIZ)(アイディエーション・ジャパン株式会社)の二つがあります。
 

AIの活用

多くのアイデアを出すためにブレインストーミングは他人の頭を借り、アルファベット法は、アルファベット順という強制力を活用しています。大量のアイデア、つまりキーワードを出す作業に人工知能(AI)を活用して、より関連性の高い言葉を数多く出せば、正解により近づくことができます。京都大学の逢沢明氏は、AIを使った連想検索エンジンにより、瞬時にテーマに関連するキーワードを抽出、またキーワードを画面上で自由に移動し、図式化するソフト「アイデア革命」を開発しました。(残念ながら、提供していたソフト会社はなくなり、現在は入手できません。)
 

発想支援ソフトの進化

ゴールに早くたどり着くためには、

  • 使えそうな過去の解決策を集める
  • できる限り多くのアイデアを集める

この二つがポイントです。そしてこれはコンピューター、つまりAIが得意とするところです。今後AI+TRIZの機能を持つ発想支援ソフトが進化すれば、このアイデア出しの時間が短縮され、より多くのアイデアから考えることで、より優れた解決策が見つかるようになることが期待されます。
 

(1)試行錯誤法

(1)試行錯誤法


(2)発想法

(2)発想法


(3)AI+TRIZ

(3)AI+TRIZ


(4)AIの活用

(4)AIの活用

図12 AIの活用とTRIZ+AIのイメージージ
 

最後の一歩、セレンディピティ

こうして、考えたアイデアですが、それがズバリ解決策なることは滅多にありません。かなり近いところに来ますが、あと一歩が足りないためゴールにたどり着きません。ここでひらめきが必要になります。つまり、集めたアイデアとゴールまでの最後の一歩をつなぐものがひらめきです。
 

ひらめきの瞬間

このひらめきについて、アメリカの広告業ジェームズ・ヤングは著書「アイデアのつくり方」の中で述べています。その中でアイデアの実際の生産は5つの段階を経由して行われます。

  1. データ集め
  2. データの咀嚼
  3. データの組み合わせ
  4. ユーレカ(発見した!)の瞬間
  5. アイデアのチェック

 

図13 ひらめきのイメージ

図13 ひらめきのイメージ


 

① データ集め

現状のリサーチと発想法によって、集めたものです。
 

② データの咀嚼

それぞれの情報を並べたり組合せたりして、自分の中でこれらの情報を多面的に見ます。その過程で部分的なひらめきが訪れたら、どんな突飛なものでも書き留めておきます。
 

③ 心の外に放り出す

アイデアの孵化段階です。この時は無意識の中で、自分で組合せの仕事をやるのにまかせます。
 

④ ユーレカ(発見した!)の瞬間(アイデアの誕生)

そして大抵は心身ともにリラックスしている時に、ひらめきが訪れます。
 

⑤ アイデアのチェック

生れたばかりアイデアは、大抵は粗削りな概念です。これを現実世界で役に立つものにするためには、最終的にこのアイデアを具体化し、実際の事業や製品に展開させる作業が必要になります。そして多くの組織やチームで、保守的な人、リスクを嫌う人が生まれたばかりのアイデアの問題点をいくつも指摘して、そのアイデアは葬り去られます。
 

問題が明らかになり、ゴールもわかりました。現状のリサーチも行い、それを解決するアイデアもたくさん集まりました。しかしまだ解決できずに行き詰ってしまいました。そこで一旦その問題から離れます。これが③の心の外に放り出す段階です。
 

そして、ある時ひらめきが訪れます。しかし、その時がいつか誰にも分かりません。明日かもしれないし、十年後かもしれません。そして残念ながら多くの人が、ひらめきが訪れる前にあきらめてしまいます。最後まであきらめずに考え続けた人にのみ、セレンディピティという女神が訪れます。フランスの細菌学者で世界で最初にワクチンを開発したパスツールは「幸運は用意された心のみに宿る」と述べています。
 

革新的なアイデアとは?

しかし閃いたアイデアは、大抵は欠点だらけの不完全なものです。このアイデアを葬り去るのはとてもたやすいことです。多くの組織やチームに必ずいる保守的でリスクを嫌う人が、この生まれたばかりのアイデアの問題点をいくつも指摘して、アイデアを葬り去っていきます。この瞬間にも世界中で数えきれないくらいのアイデアが葬り去られているでしょう。
 

この欠点だらけのアイデアを守り育てることができるのは、アイデアを閃いた人しかいません。この問題について深く考えた人だけが、閃いたアイデアが本当に革新的なことが分かるからです。彼のみが確信を持って「これは素晴らしい方法だ」といえるのです。しかし、アイデアが革新的であればあるほど、欠点も多くあります。このアイデアを具現化するには、その欠点をひとつひとつつぶしていかなければなりません。欠点をなくす方法を考え、疑問な点を実験で確認しなければなりません。
 

それには時間と費用がかかります。時には上層部の理解が得られず、担当者が隠れて開発せざる得ないこともあります。コニカのオートフォーカスカメラは、開発予算が打ち切られる中、昼は通常業務を行い、夜間こっそりと研究を続けて実現したものです。
 

図14  小さな成功から大きな成功

図14 小さな成功から大きな成功


 

このような粘り強さはどこから生まれるのでしょうか。誰もが生まれながら粘り強さを持っているわけではありません。自分の手で小さな成功を積み重ね、それが自信となります。徐々に高いハードルチャレンジし、それを克服することで「できる!」という自信から「○○するんだ!」という強い意志が生まれます。そしてひらめきまでの期間が長ければ長いほど、その方法を実現したいという気持ちが強くなります。
 

アイデアの具現化と設計作業

詳細な要求機能の具現化

アイデアが見つかり、ゴールまでの道筋が分かれば、後は具体的な設計作業に入ります。ここで重要なのが詳細な要求機能の定義です。特に高度な機能を持った製品や複雑なシステムでは必ず必要です。一方大企業でも要求機能を明確にしないで設計することは珍しくありません。かつては欧米製品のキャッチアップをすれば製品開発できました。その後、日本製品が欧米製品を上回っても、開発者が見ていたのは顧客でなく競合でした。改めて要求機能を定義しなくても、競合製品よりも良いスペックの製品を、より早くより安く作ればよかったのでした。
 

今日では、詳細に要求機能をしないと以下のような問題が起きます。

  • 要求機能の矛盾
  • 全体像が見えない
  • 要求機能が干渉
  • 正しくテストできない

 

【要求機能が矛盾する】

要求機能が矛盾していると設計に無理が出ます。後日それが原因となり致命的な問題が生じることもあります。あれもこれもと欲張る前に、一度要求機能をリスト化し、要求機能を満足しても論理的、物理的に矛盾しないか確認します。
 

【創造したいものの全体像が分からない】

要求機能を、基本的な上位機能から下位機能へと展開します。こうして要求機能の全体像を明らかになると、創造しようとするものの全体像が分かります。
 

【要求機能が干渉して問題を起こす】

要求機能の干渉とは、複数の要素が相互に影響し合って目的を達成することです。例えば、デジタルカメラにおいて、撮影した画像の品質を高めるために、レンズ、撮像素子、画像処理ソフト単体での性能を上げるとともに、それぞれを組み合わせた状態で最高の画像が得られるようにチューニングします。レンズのひずみを画像処理でカバーし、撮像素子の感度をレンズの明るさでカバーします。こうすることで、レンズ、撮像素子、画像処理ソフトの要求機能は、単体の時だけでなく、組み合わせた状態でも求められます。これが要求機能の干渉です。これは別名「すり合わせ」と呼ばれています。
 

こうすることで、各要素が持っている性能以上の能力を引き出すことができます。一方一つの要素の条件が変わると、他の要素もすべて再度チューニングしなければなりません。レンズ、撮像素子に多くの種類がある場合、その組合せが非常に多くなります。チューニングやテストはすべての組合せに対して行わなければならず、工数は膨大なものになります。
 

その結果、特定の組合せで確認や検討が行われず、大きな問題を起こします。(参考文献2によれば、ハードウェアの失敗の1/4は要求機能の干渉によるものと述べています。)
 

【正しくテストできない】

要求機能がすべて明確になっていれば、それに基づきテストを計画し行うことができます。もし要求機能が明確になっていなければ、どのようにテストを行うかはテスト担当者の勘と経験に頼ることになります。その結果、テストの漏れが発生します。特にソフトウエアでは、ユーザーが設計者の意図しなかった操作を行うことがあります。その結果、予想外の結果が生じ大きな問題が起きます。すべての要求機能をもれなくテストするためには要求機能の明文化は必須です。
 

モジュラー設計とインテグラル設計

要求機能を干渉させずに独立させるのがモジュラー設計です。マサチューセッツ工科大学のスー教授は、「要求機能は干渉するよりも、互いに独立であることが設計として絶対に正しい」と述べています。
 

従来、製品を構成するユニットの性能が不十分な場合は要求機能を干渉させて、各ユニットを組み合わせた状態でチューニングし、より高い性能を引き出します。しかし、各ユニットの性能が上がり、顧客の要求を満たすことができれば各ユニットの要求機能を独立させ、互換性を持たせた方が、大量生産できるためコストが下がります。かつてコンピューターは、メモリー、ハードディスクをCPUと一体で開発しました。しかしメモリーとCPU間の通信、CPUとハードディスクの通信に余裕が出てきたら、標準化しても十分な性能が得られるようになりました。今日ではDDR規格やSCSI規格で互換性が満たされ、どれでも自由に組み合わせできます。
 

QFDとシミュレーション

QFD:品質機能展開
(Quality Function Deployment)とは,顧客のニーズを整理し、技術的にどのようにして顧客の要望する品質を実現するかを明確にする方法です。市場の声を整理した要求品質展開と製品に関する技術的な特性を展開した品質特性展開表,要求品質展開表と品質特性展開表の二元表の品質表などがあります。
 

図15  QFDの構成

図15 QFDの構成


 

品質機能展開表は,提供する製品の設計段階からの品質保証を目的とした設計アプローチ方法です。
品質を保証するための,現行技術との対応付け(技術展開),故障発生との因果関係(信頼性展開),開発するためのコスト設定(コスト展開)など,展開方法は多岐にわたります。
 

品質機能展開の根幹が品質表です。

  1. 顧客の要求する品質(要求品質)を集め階層構造にまとめる
  2. 技術的にどのような特性(品質特性)を考慮すべきかまとめる
  3. ①と②の組み合わせの中で、競合他社の製品を考慮しながら、重点を置く点を絞込む。
  4. 製品の品質をどのように企画するのか(企画品質)設定する。
  5. 企画品質を実現するために、どのような仕様に(設計品質)すればよいか、不足している技術は何か明確にする

 

【狩野モデル】

東京理科大学教授 狩野紀昭氏により提唱されたもので、顧客満足度に影響を与える品質要素を分類し、その特徴を記述したモデルです。
 

図16  狩野モデル

図16 狩野モデル


 

  • 魅力的品質要素
  • 充足されれば満足を与えるが、不充足であっても仕方がないとされる品質要素

  • 一元的品質要素
  • 充足されれば満足し、不充足であれば不満を引き起こす品質要素。

  • 当たり前品質要素
  • 充足されれば当たり前と受け止められが、不充足であれば不満を引き起こす品質要素。

 

参考文献

「ひらめき教室」 松井優征、佐藤オオキ 著 集英社新書
「想像はシステムである」 中尾政之 著 角川oneテーマ
「結果が出る発想法」 逢沢明 著 PHP新書
入門編「原理と概念に見る全体像」 ゲンリック・アルトシュラー 著 日経BP社
「現状打破・創造への道」 狩野紀昭 著 日科技連
 

 

経営コラム ものづくりの未来と経営

人工知能、フィンテック、5G、技術の進歩は加速しています。また先進国の少子高齢化、格差の拡大と資源争奪など、私たちを取り巻く社会も変化しています。そのような中

ものづくりはどのように変わっていくのでしょうか?

未来の組織や経営は何が求められるのでしょうか?

経営コラム「ものづくりの未来と経営」は、こういった課題に対するヒントになるコラムです。

こちらにご登録いただきますと、更新情報のメルマガをお送りします。
(登録いただいたメールアドレスは、メルマガ以外には使用しませんので、ご安心ください。)

経営コラムのバックナンバーはこちらをご参照ください。
 

中小企業でもできる簡単な原価計算のやり方

 
製造原価、アワーレートを決算書から計算する独自の手法です。中小企業も簡単に個々の製品の原価が計算できます。以下の書籍、セミナーで紹介しています。

書籍「中小企業・小規模企業のための個別製造原価の手引書」

中小企業の現場の実務に沿ったわかりやすい個別製品の原価の手引書です。

基本的な計算方法を解説した【基礎編】と、自動化、外段取化の原価や見えない損失の計算など現場の課題を原価で解説した【実践編】があります。

ご購入方法

中小企業・小規模企業のための個別製造原価の手引書 【基礎編】

中小企業・小規模企業のための
個別製造原価の手引書 【基礎編】
価格 ¥2,000 + 消費税(¥200)+送料

中小企業・小規模企業のための
個別製造原価の手引書 【実践編】
価格 ¥3,000 + 消費税(¥300)+送料
 

ご購入及び詳細はこちらをご参照願います。
 

書籍「中小製造業の『製造原価と見積価格への疑問』にすべて答えます!」日刊工業新聞社

書籍「中小製造業の『製造原価と見積価格への疑問』にすべて答えます!」
普段疑問に思っている間接費・販管費やアワーレートなど原価と見積について、分かりやすく書きました。会計の知識がなくてもすらすら読める本です。原価管理や経理の方にもお勧めします。

こちら(アマゾン)から購入できます。
 
 

 

セミナー

原価計算と見積、価格交渉のセミナーを行っています。

会場開催はこちらからお願いします。

オンライン開催はこちらからお願いします。
 

 

簡単、低価格の原価計算システム

 

数人の会社から使える個別原価計算システム「利益まっくす」

「この製品は、本当はいくらでできているだろうか?」

多くの経営者の疑問です。「利益まっくす」は中小企業が簡単に個別原価を計算できるて価格のシステムです。

設備・現場のアワーレートの違いが容易に計算できます。
間接部門や工場の間接費用も適切に分配されます。

クラウド型でインストール不要、1ライセンスで複数のPCで使えます。

利益まっくすは長年製造業をコンサルティングしてきた当社が製造業の収益改善のために開発したシステムです。

ご関心のある方はこちらからお願いします。詳しい資料を無料でお送りします。

 

]]>
https://ilink-corp.co.jp/6457.html/feed 0
「事務ロボットがホワイトカラーの仕事を奪う!」~話題のRPAの特徴と課題~ https://ilink-corp.co.jp/6256.html https://ilink-corp.co.jp/6256.html#respond Wed, 20 Jan 2021 01:40:23 +0000 https://ilink-corp.co.jp/?p=6256

Related posts:

  1. ロボットは人の仕事を奪う? ~産業ロボットの歴史と最新のロボット技術~
]]>
昨年あたりから急速にマスコミに登場したRPA (Robotic Process Automation)、ホワイトカラーの生産性が大幅に向上し、事務部門において大幅な省人化やコストカットの実績が報告されています。その成果を聞いて、導入を決定した企業も多くあります。
 

このRPAはどのようなものでしょうか?
そして本当にそのような大幅な効率アップが実現するのでしようか?
 

このRPAについて、調べました。
 

RPAとその特徴

RPAとは

RPAとはRobotic Process Automationの略で、事務作業を人に変わってソフトウェア・ロボットを用いて自動化することで、事務作業の効率化を図るものです。ここでソフトウェア・ロボットとは何でしょうか?
 

ロボット(robot)とは、人の代わりに何等かの作業を自律的に行う装置、もしくは機械のこと(ウィキペディアより)です。この定義だと、装置もしくは機械を指しますが、今日では、物体としては存在しないが「人の代わりになんらかの作業を、ある程度の工程や手順を自動的行うもの」という意味で、コンピューター言語によるプログラムやソフトウェアもロボットの範疇に含まれます。そこでRPAもロボットとされています。
 

RPAの3段階

このRPAの中に認知技術(ルールエンジン・機械学習・人工知能等)を活用したロボットで、人間を補完して業務を遂行できる仮想知的労働者(Digital Labor)を指す場合もあります。ソフトウェアと仮想知的労働者ではずいぶん違いますが、これは以下の表のようにRPAには3段階の発展があるからです。
 

表1 RPAの3段階

クラス 主な業務範囲 具体的な作業範囲や
利用技術
クラス1 定型業務の自動化 人が行っているマウスやキーボード操作をロボットが自動的に行うことで定型業務を自動化。WEBやメール、伝票などからの情報取得や入力作業などに適用される。
クラス2 一部非定型業務の自動化 AIを活用して定型業務だけでなく、判断を伴う業務や非定型業務にも活用できるもの。音声認識や手書き文字読取、画像解析や過去のデータと照合して判断を行う業務に期待されている。
クラス3 高度な自律化 定型業務の自動化だけでなく、業務プロセスの改善や意思決定まで行うもの。まだ実現していない。

 

現在、広く利用されているのはクラス1の定型業務の自動化です。その中で一部のRPAに手書き文字認識や音声認識にAIが使われ、クラス2に近いものが使われ始めました。一方クラス3の時期は未定ですが、2030年には実現するという説もあります。
 

RPAの導入が促進した背景

日本でRPAを積極的に導入しているのは金融機関です。大手金融機関は顧客との間に膨大な数の取引があります。業務の多くがシステム化されましたが、人手による部分もまだ残っています。厳しい経営環境に直面している金融機関は、AIやビッグデータとともにRPAも早くから研究し、その導入による業務効率化や生産性向上を研究してきました。その成果が明らかになるにつれて、他でも導入に取り組む企業が増えています。
 

そのため調査機関によれば2020年にはRPAの国内市場は2兆円を超えると予測されています。最も大企業がRPAを導入する場合、予算規模は数十億円とも言われ、大手が導入するだけでも市場は容易に1兆円に達します。
 

RPAが注目される背景には、少子高齢化により将来の労働人口が減少することがあります。内閣府によると、2014年は6,587万人の労働力人口が、2060年には3,795万人に減少します。総人口に占める労働人口の割合は、2014年の約52%から2060年には約44%に低下する見通しです。
 

RPAで人間でなくてもかまわない定型業務を自動化すれば、人間が行うべき業務が精査され、より効率的に業務を遂行することが可能となり、日本の労働人口減少の問題解決に貢献するといえます。
 

RPAと従来のITシステムの違い

RPAはロボットと呼ばれますが、実態はソフトウェアです。なぜ、ここにきてRPAという新たなソフトウェアが脚光を浴びたのでしょうか? それは従来のITシステムの成り立ちとも関係があります。
 

ITシステムの成り立ち

従来のITシステムは、会計、受発注管理、生産管理などの業務を、それぞれ仕様を作成し、プログラムを組んで構築しました。30年以上前のオフコン全盛の時代は、ソフトウェアはオフコン導入の際にユーザーの要求に合わせて製作するのが主流でした。
 

現在ではソフトウェアに対する要求が高度化し、開発に時間と費用が掛かるようになりました。そのため、その都度製作していたのでは高価になるので、市販のソフトウェアを購入するケースが増えています。それでも、今でも自社の業務に合わせて一から作ることもあります。(フルスクラッチといいます)
 

市販のソフトウェアは、会計、受発注管理、予算管理、顧客管理、在庫管理などそれぞれの機能に特化して製作されています。会社の業務全体をシステム化するには、複数のソフトウェアを統合して運用する必要がありました。
 

現在は、基幹業務システム(ERP)が導入され、これらの業務は統合されるケースが増えてきました。それでもデータ入力や異なった業務へのデータ転送などは、人による作業がまだ多く残っています。これらの作業の多くは、作業内容は決まっている定型化した作業であり、コンピューターに置き換えることができるものでした。
 

ITシステム、RPA、エクセルマクロ・VBAの違い

RPAとよく似たものにエクセルマクロとVBAがあります。エクセルマクロはエクセル上で動くプログラムのことです。これを活用すればエクセル上の操作を自動化できます。プログラムはエクセルでの操作を記録するだけで可能です。またVBAはエクセルに標準で搭載されているプログラムでエクセル以外にも、ワードやパワーポイントとの間の処理を自動化することができます。
 
エクセルマクロ・VBAが、エクセルやオフィスソフト内での自動化を得意とするのに対して、RPAは他のソフトとの間、さらにWEBアプリとの間の作業を自動化します。
 

一方、RPAで自動化している作業の中には、わざわざRPAで操作しなくても、元々のITシステムを改造した方が、使いやすいこともあります。以下に、作業の自動化に対して、ITシステムの改造、RPA、エクセルマクロ・VBAの特徴と違いを述べます。
 

ITシステムの改造、又はモジュールの追加

  • 動作は安定し、高速
  • 専門知識が必要で、対応に時間と費用がかかる
  • 改造に情報システム担当者が要件定義や仕様打合せなどの手間を取られる
  • 複数のベンダーのITシステム間に改造やモジュールを追加する場合、コミュニケーションのコストが増加する

 

RPA

  • プログラミングの専門知識は不要、教育を受ければ現場の担当者でもプログラミングが可能
  • 自社で対応できるため、対応が早く費用もかからない
  • 担当者に相応のスキルが必要
  • 情報システムが担当すると、業務負荷が増加する
  • 条件によっては、動作が不安定になったり、エラーが起きたりする

 

エクセルマクロ・VBA

  • 自社で対応できるため、外部費用がかからない
  • 担当者に相応のスキルが必要だが、現場でも可能
  • エクセル内(エクセルマクロ)、オフィス内(VBA)の制約がある
  • プログラムによっては動作が不安定になる

 

このように考えると、事務の効率化=RPA と短絡的に考えるのではなく、エクセルマクロ・VBAの方が向いているものと、既存のITシステムを改造した方が良いものがあり、適切に判断する必要があります。
 

RPAの利点

RPAをエクセルマクロ・VBAやITシステムの改造と比較すると以下の3
あります。
 

  • 辞めない、休まない、夜間に自動処理が可能
  • 働き続ける、集中力が低下しない
  • 変化に強く、同じ間違いを繰り返さない

 

【辞めない、休まない、夜間に自動処理が可能】

人のように突発的に休みを取ったり、退職したりしません。また24時間働き続けることができるので、時間のかかる業務は夜間に行うことができます。またカレンダー機能があり、決まった時間に自動的に開始するため、作業忘れがありません。
 

【働き続ける、集中力が低下しない】

長時間稼働しても人のように集中力が低下してミスをすることがありません。大量のデータを処理する場合、人はどこかでミスをするのでその予防や対策が必要ですが、RPAはプログラムが正しければミスがありません。
 

【変化に強く、同じ間違いを繰り返さない】

相手のアプリケーションごとに変わる業務や、日ごとに変わる業務など変化が激しい時もプログラムを切り替えることで柔軟に対応できます。また同じ間違いを繰り返すこともありません。
 

このような特徴があるため、ある程度の手順が決まっている、いわゆる「定型作業」に対しては、RPAはミスなく効率を大幅に向上することができます。「ITシステムによる改善を検討したが費用対効果が見合わず断念した」「そもそも自動化はできないとあきらめていた」業務などにも、改善と改革の可能性を与えてくれる技術です。
 

RPAを導入する5つのメリット

RPAを導入することで得られるメリットは、以下の5つです。
 

  1. ホワイトカラー業務の自動化・効率化
  2. 従来人手に頼っていたオフィス業務を効率化・自動化を実現できます。
     

  3. 人的ミスの防止
  4. 人間が集中力を持続できる時間は限られており、特に何度も繰り返し行う作業では、ミスが発生することが避けられません。
     

  5. 生産性向上
  6. 従来人間が行っていた定型業務をRPAに代行させることで、担当者を他の業務に時間を割くことができ、全体の生産性が向上します。また今後人手不足が深刻化すると、生産性向上が喫緊の課題となり、RPAを導入がその解決策となります。
     

    図1 RPAの自動化の効果

    図1 RPAの自動化の効果


     

    また月に数日しかないが、その間は作業量が多くミスが許されない業務は、担当者の負担が大きく、ミスが担当者に大きな負担となることがあります。
    RPAは一度記録した作業を正確に実行するため、人的ミスの防止になります。またRPAは長時間作業しても、人間のように集中力が途切れ精度が下がることがありません。
     

  7. コスト削減

5分かかる作業がRPAで3分となっても、単体での時間短縮効果は限られています。しかし日々の業務や複数の人が関係する業務では、わずかな時間の短縮も蓄積すれば大きな効果を生みます。またRPAが自動的に行うことで管理の手間がなくなり、曜日・時間に関わらず作業を行うため、全体として大きな工数削減が実現し、その結果、人件費削減につながります。
 

事務業務のアウトソーシングとの比較

データ入力などの事務業務を海外、特に新興国や発展途上国へ委託するBPO(ビジネス・プロセス・アウトソーシング)が、事務業務の効率化の方法として普及しています。しかし、これらは人が行うため、担当者の教育やスキル向上が必要で、スタッフが退職したりすると引き継ぎがうまくいかず、品質が低下したり、納期がかかるなどの問題が生じます。
 

新興国や発展途上国へ委託する場合、これらの国々の人件費が上昇すれば、コストも上がります。さらに正確性が求められる業務は、二重三重のチェックが不可欠となり、コストと時間がかかる問題もありました。
 

RPAは、このようなBPOの人に関する問題がなく、品質とコストが維持できる点に違いがあります。
 

RPA導入の効果と注意点

効果の4段階

RPAの導入は以下のように4段階の効果があるといわれています。
 

  1. RPAソフトウェアの特性 一次効果
  2. コンピューター処理のため、以下の効果が得られます。
    ① 効率化
     ● ミスがない
     ● 見直しや確認が不要
    ② 生産性
     ● 処理速度が早い
     

  3. ロボットファイルの設計ノウハウ 二次効果
  4.  ● 反復処理を実装する、スケジュールに沿って実行する、などを組み込むことで、生産性を向上
     ● プロクラムを部品化・モジュール化し、社内で共用することで、業務を横展開できる、二次効果
     

  5. システム全体としての効果 三次効果
  6. OCR、AIと合わせて導入することで、相乗効果が生まれ自動化が促進します。
     

  7. 導入活動による効果 四次効果

RPAを導入するために、業務全体を見直し、定型化された業務とそうでない業務を洗い出すことで、業務全体の見直しや改善が進みます。
 

実際にRPAを導入すると、一次や二次の効果よりも三次や四次の効果の方が大きいといわれています。
 

導入にあたっての注意点

【RPAへの正しい理解】
大手企業のRPA導入事例やコスト削減効果に踊らされず、RPAのできることを正しく理解します。企業によっては、前述のように当初は時間短縮の効果はそれほど大きくありません。セミナー参加や他社の導入事例集を集めるのも理解を深めるのに良い方法です。
 

【RPA自動化に適した業務の洗い出し】
導入する部門の業務を洗い出し、定型化されている業務やルール化されている業務の中で、情報が電子化されている業務を候補に挙げます。また時間短縮やミス防止など効果のわかりやすいものから取り組みます。
 

【RPAの導入の準備】
プロジェクト等推進体制をつくりリーダーを決定します。特に情報システム担当には負荷がかかるので、前向きな人を選びます。最初は小さな業務から取り組み(スモールスタート)、徐々に対象範囲を拡大します。
 

RPAを使う際の注意点

RPAを使う上で注意すべきことは、RPAで自動化できることは定型的な業務に限定されることです。人間が判断するような業務は、現状のRPA クラス1ではできません。
 

また定型的な業務でも、文字や画像の識別、音声の識別などコンピューターが苦手とする識別はRPAには向いていません。多くのRPAは、文字認識(OCR)や音声認識は搭載しておらず、それらは別のソフトウェアを使用することになります。従って業務がスムーズにいくかどうかは、それらのソフトウェアに依存します。
 

具体的な注意点 ユーザックシステムのブラウザ名人 の例

RPAは、販売管理システムや勤怠管理システムなどのソフトウェアをRPAという別のソフトウェア(RPAでは、ロボットといいますが)で操作します。従って、RPAが安定して動作するためには、RPAが認識しやすいように動作を設定する必要があります。
 

【安定性を確保するために】
RPAが安定した動作をするために、通常はプログラミングの際、マウスを操作し選択や入力を行う場合は、RPAはマウスがhtmlのどこを操作しているか認識し、htmlのタグとしてプログラミングしています。
 

キーボードで操作する場合も、キーボード入力を認識してプログラミングしています。
対して画像内の座標を指定した場合は、サイトによってはPC環境に応じて画像サイズを変える場合があり、座標が違ってしまう可能性があります。
 

画面全体の座標を指定した場合、画面表示はPCのディスプレイの設定により異なるため、思ったように動作しない場合があります。
 

RPAのベンダー

Biz Robo / Basic Robo (Kofax Kapow10)

Kapow社が提供していたツールをKOFAX社が買収・統合したもので、RPAテクノロジー社からはBiz Robo / Basic Roboとして提供されていますが、他のベンダーからはKofax Kapow10として提供されています。
 

サーバー上で稼働し、複数のロボットを同時に使用でき、Webによる大規模なデータ処理アプリケーションに適しています。国内では100社を超える企業に導入され、トリンプインターナショナル社、日本生命、オリックスグループなどに導入されています。費用は、一例として年間利用料の場合60万円~となっています。
 

Ui Path

マイクロソフトのWorkflow FoundationやXAML書式を適用したRPAツールで、動作シナリオ作成、実行、管理支援などをモジュール化し、別々に提供することで、小規模~大規模企業まで幅広く対応する製品です。国内で555社に導入され、三井住友フィナンスグループ、電通、早稲田大学などに導入されています。価格は、最小構成単位で年間利用料87.5万円、自動実行を含めた開発・実行・管理機能の最小単位の年間利用料が385.5万円となっています。
 

Blue Prism

2001年に設立されたRPAの老舗で、金融、医療など高度なセキュリティが必要な分野に強く、日本ではDeNA、住友商事など金融機関や広告代理店、Web企業など30社に導入されています。価格は年間利用料が120万円~です。
 

Automation Anywhere

世界市場では、Blue Prism社、Ui Path社と並んで 3大RPAプロバイダーの1社です。事務処理業務のRPAプラットフォームAutomation Anywhere Enterpriseの他に機械学習/コグニティブ技術によって非構造化データ解析を行い、意味を理解し、必要なアクションをRPAに渡すIQ Bot、リアルタイムでデータからの洞察を得るBot Insight、仮想技術により業務量に応じてボットの数をオンデマンドで調整するBot Farmなどのツールを提供しています。
国内では、横河電機、サントリービジネスシステム、第一生命保険などが導入し、価格は最小構成で100万円/年、標準的な構成で1,300万円/年です。
 

WinActor

NTTの研究所で生まれた純国産RPAツールで、ほぼすべてのWindowsデスクトップアプリケーションに対応し、Webアプリケーションにも対応しています。デスクトップ型でサーバーを必要としないのでPC1台から始めることができ、画面イメージによる機能に特徴があります。2000社を超える企業が導入し、価格はフル機能版が90.8万円、実行機能のみが24.8万円です。
 

Autoジョブ名人

ユーザックシステム社が開発したWebシステム向けの国産RPAツールです。元々Web EDIの受信システムを10年以上にわたり販売していてWebからのデータ処理に強みがあります。ブラウザ操作に特化したAutoブラウザ名人、メール処理を中心としたAutoメール名人もあります。価格は年間60万円、スクリプト実行版は年間18万円です。
 

CELF RPAオプション

SCSK社が開発したもので、Excelの知識でWebアプリケーションを作ることができるクラウドサービスCELFにRPAオプションとして追加されたものです。ほぼすべてのWindowsデスクトップアプリケーション、およびWebアプリケーションに対応しています。Excel内の処理やデータベース連携を得意とし、RPAで行う処理を単純化することができます。価格は、CELFの年間利用料が17.5万円、RPAオプションが3.5万円です。
 

RPAの実施例

投資信託の口座開設業務の自動化

ゆうちょ銀行は、これまで人が行っていた投資信託の口座開設業務に、富士通が開発した業務自動化システムを導入しました。OCRとRPA ( Kofax社の「Kapow(カパウ)」) を活用して、紙に記入した口座開設申込書の読み取り、内容確認、口座開設手続きを自動化し、作業時間を1/3に短縮しました。
 

この作業は、口座開設申込書と顧客の口座情報をひも付けを行い、口座の情報や顧客の個人情報を行員が比較・確認し、システムに手で入力しています。
 

これを読み取った申請書をOCR「DynaEye(ダイナアイ)」を活用し、印字された文字や手書きした文字を高精度に認識し、文字のつぶれなどで読めない時はエラーを返します。未記入部分などがあればエラーを出力し、行員は該当部分のみを確認して修正します。
 

読み取った申請書の情報は、普通口座の顧客情報と合わせて登録し、内容を照合して確認、投資信託システムへの入力から完了通知までをRPAで実施することで、これまでに投資信託の口座開設にかかっていた時間を3分の1に短縮しました。
 

定型化した業務にRPAを導入

社内の業務を洗い出し、定型化している業務にRPAを導入し、残業時間の削減を目指します。業務を洗い出した結果、59業務にRPAの適用を決め、21業務のRPA化が完了しました。例えば、勤怠管理の自動化、顧客への納期解答書の作成、請求書の確認業務などです。
 

Web EDIデータのダウンロード

Web EDIのデータを取引先のWebサイトからダウンロードしますが、発注が365日あり取引先の数も多いため、高い業務負荷でした。取引先ごとにWebサイトの画面が異なるため、操作方法も異なり、作業ミスや漏れが発生していました。
 

RPAに取引先ごとのデータのダウンロード作業をプログラム化し、自動的にダウンロードし、基幹システムに転送するようにした結果、受注ミスと休日出勤がなくなりました。
 

銀行の入金データのダウンロード

(ジャパネット銀行)
クレジットカードやデビッドカードの決済のため銀行のWebサイトにアクセスし入金データをダウンロードし確認していますが、決済の増加により業務量が増え、ミスや漏れが発生していました。銀行のWebサイトの操作に時間がかかるため、人員が増加する半面、ミスが許されないため離職者も増えていました。
 

RPAにより銀行のWebサイトに自動的にアクセスし入金データをダウンロードすることでミスがなくなり、時間も短縮されました。
 

勤怠情報をメール

(外食チェーン)
働き方改革で残業を規制するため、本部の勤怠管理システムで時間超過者をリストアップし、各店舗の店長に手作業でメールを送信していました。作業忘れや送信漏れが起き、作業工数もかかっていました。
RPAで警告メールを自動送信しました。
 

We価格調査

(タイヤのネットショップ)
毎日社員4名が専任して競合店の価格を調査していました。ミスの発生や社員のモチベーション低下の課題がありました。
価格調査をRPAにプログラムし自動化しました。
 

事例のまとめ

多くの事例では、中小企業はRPAの導入による削減時間は、1か月あたり数分から数百分、コストダウン効果で見れば、1か月数千円から数万円にすぎません。費用対効果で考えれば、RPAよりも人で行った方が良い場合もあります。
 

従ってRPAの導入はコストダウンだけでなく、社員の負担を少なくすることで、より付加価値の高い業務に注力できることや、業務負荷が増大した時にも柔軟に対応できなど、総合的に判断する必要があります。
 

専門的なプログラミング技術は不要ですが、業務の自動化とはプログラム化することなのでプログラミングのセンスがあった方が望ましいです。できればエクセルマクロなどの経験があると良いです。
 

RPAかソフトの改造か

このようにRPAの実施例を見ると、わざわざRPAを導入しなくても、現在使用しているITシステムを改造する、あるいはモジュールを追加した方が使いやすい場合があります。RPAは、既存のITシステムを別のソフトウェアで操作するため、RPA自体の不安定さが内在します。またRPAのプログラムの管理が発生します。大がかりな改造でない場合、既存のITシステムに追加のモジュールをアドオンすれば対応できる場合、RPAよりもこちらの方が、操作が簡単で動作も安定していることがあります。
 

逆にRPAの利点は、エンドユーザーが自分でプログラムできる点です。そのため迅速に立ち上げることができ、変更も容易です。またRPAはひとつで多くのソフトウェアを操作できるため、個々にITシステムを改造するよりも少ない費用でできます。
 

RPAを用いた業務効率化とその将来

効果は企業規模により異なる

RPAは定型化された業務が多ければ導入することで、業務を効率化することができます。しかし中小企業の場合、単純な定型業務に一人が専念していることは稀です。そのため業務を効率化しても人員削減までには至りません。
 

これが大企業では、定型業務にある程度の人員が投入されている場合があり、この場合はRPAを導入することで、人員削減とコスト削減が実現します。
 

またRPAを導入することで情報システム担当者の業務量は増加します。情報システム担当者が業務効率化に積極的でない場合、不満が大きくなります。
 

大企業の場合は、自部門の業務を洗い出し、定型化している業務、RPA導入で効果が見込める業務を抽出し、プロジェクトとして推進します。ある程度投資できればOCRや音声認識も導入することで、従来はコンピューターに置き換えできなかった業務も置き換えることができます。
 

中小企業の場合は、定型化できる業務をある程度ピックアップしますが、大企業のように時間とお金をかけて、業務を洗い出すようなことは、時間も人も不足です。そこでそれほど大がかりでないRPAを導入して、まずはRPAに置き換えられる業務をいくつか試してみます。それで効果が確認されれば、現場主導で置き換えできる業務を見つけて置き換えていきます。その際、最初は小さな業務から始めて、できるだけ大きな問題が起きないところから進めていきます。
 

定型的な業務で社外に発注している業務(business Process Outsource : BPO)は、RPAの導入により外注費の削減が可能です。
 

RPAの将来は?

【クラス1】
クラス1の機能では、中小企業では高額なRPAを導入しても効果は少ないと思います。RPAの効果は、情報システム担当者のスキルに依存するため、まずは安価なRPAを導入し、情報システム担当者のスキルアップを図ると良いでしょう。
 

この部分がどんどん使いやすくなれば、情報システム担当者だけでなく、一般の社員も簡単にプログラミングできるようになり、RPAを使う場面が増えます。データの入力に2時間の作業でもプログラミングが30分であれば、RPAの動作は短時間に終了するため、作業時間は半分以下になります。
 

そう考えると、RPA普及のポイントは、RPAの使いやすさの進化と、使う側のスキルの向上です。使う側がプログラミングに慣れていないと、RPAは面倒に感じられ、時間をかけてでも単純作業を続ける人が出るかもしれません。
 

例えば三次元測定機は、一度測定動作をすれば、自動で測定を繰り返すプログラミング機能が30年以上前からありました。そのため三次元測定の担当者にとってプログラミングは当たり前となっています。従って、環境が整えば多くの人がRPAのプログラミングになじむかもしれません。
 

【クラス2】
今後、OCRや音声認識がさらに普及すれば、クラス2は実現可能です。実際は、FAXや紙の帳票や伝票をデータ化して、オンラインで受け取れば、OCRは必要ありません。現実には、取引先とのシステムの違いやセキュリティの問題から、紙でのやり取りは依然としてあります。特に行政機関とのやり取りは印鑑での決済があるため、当分はデータ化しない、データ化してもpdfどまりと予想されます。
 

その場合、OCRがRPAに組み込まれ、エラーのノウハウを広く共有して識別制度が向上すれば、RPAはさらに様々な業務に適用できます。
 

クラス2の例として、請求書のスキャンデータから、AIにより書式を判断して項目を整理し、データベース化するものがあります。初めての書式でも類似の書式から判断したり、スキャンデータと過去の情報を比較してご認識を修正したりして、高い精度を実現しています。
 

【RPAとAIを組み合わせての発展】
RPAツールは導入してからが勝負、スモールスタートで始めて大きく育てる方が良いと言われています。わかり易いRPAから始めてIT活用率を高めていくことが手堅いと考えられます。ここでは、RPAから始めるAI活用の第一歩をご紹介します。
 

【RPAツールで扱うデータ等を拡大】
AI-OCRやAIスピーカーなどの技術を利用して、紙や画像、音声などの情報を、RPAが扱えるような形式のデータに変換し、自動化できる業務の範囲を広げます。非構造化データを構造化する、というような言い方もされます。RPAツールという自動化ロボットに、AI-OCRという優れた目を与えたり、AIスピーカーという優れた耳を与えたりするイメージです。
 

【審査等の判断業務との連動】
RPAでAIのような高度な判断まで行おうとする場合は、高度な判断をする特化型AIと組み合わせるのが現実的です。例えば与信審査判断力を鍛えた特化型AIに、以下のように組み合わせます。
 

  1. RPAが与信審査AIに所得等の情報を渡し、この人にお金を貸しても大丈夫かと問う
  2. 与信審査AIは、受け取った情報から貸与可否を審査判断する
  3. RPAは与信審査AIから戻ってきた審査判断に応じた処理を行う
      (貸与可であれば、貸し出す業務を自動実行する)

 

今後は、何かしらの目的に特化したAI商品が増えていくと予想されます。実用段階に達した特化型AIをRPAと組み合わせることで、それまではRPAには難しい業務を自動化できるようになります。RPAという自動化ロボットに、審査AI等の相談相手を付随するわけです。
 

クラス3の実用化は…

クラス2のRPAでのAIの役割は、OCRの認識精度を高めたり、取得したデータの項目を見て、適切な処理を判断したりするものです。これは、すでに音声認識や検索エンジンでAIの恩恵を受けている私たちにも馴染みやすいものです。また今後AIの活用としては、与信管理や融資の可否にAIやRPAの活用が予想されます。
 

より高度な非定型業務を判断するには、判断の元となるデータが蓄積されていなければなりません。今後RPAが普及し、様々な業務においてデータが蓄積されれば、それらのデータを活かして、AIが判断できる場面が出てくると予想されます。
 

今後どのような場面でAIを活用して、RPAが自動的に判断し、遂行できるような業務があるのか? もし、そのような業務が急速に増えればホワイトカラーの仕事が半減するかもしれません。
 

クラス3よりも重大な変化

むしろ、クラス1、あるいはクラス2のRPAが大量に普及することで、雇用環境に重大な変化が起きるかもしれません。
 

現在のホワイトカラーの仕事の多くは定型業務です。もしこれらがRPAに置き換わると残った仕事は創造的な仕事だけになってしまいます。これは設計でも例外ではありません。設計作業では多くの時間を過去の設計の複写や改変に割いており、本当に新しいものを考える時間は多くありません。
 

このような定型業務に対しクラス2のRPAをアシスタントとして導入すれば、作業効率は飛躍的に高まるでしょう。その半面、設計者は常に頭を動かすことに追われます。あるいは従来5時間かかっていた定型業務をRPAが5分で終わらせてしまえば、設計者は3時間創造的な業務に取り組むだけで同じ成果が出せるかもしれません。
 

一方、ホワイトカラーの中で創造的な業務に向いていない人材は、職場での居場所を失う可能性があります。すでに製造業の現場では、自動化された設備の設定やプログラム、改善のできる人材と、製品の着脱など単純作業しかできない人材とで待遇に格差が生じています。このような状況がホワイトカラーの職場でも、より深刻化するかもしれません。
 

そして、仕事をあまりに創造的なものだけにすることは、別な面で創造性の支障になる可能性があります。優れた研究者や開発者は、膨大なデータを手間をかけて整理・分析し、その過程でデータの中から神がかり的な直感でもって、新たな発見をすることがあります。そこまででなくても、ベテランはデータを眺めていて他の人が気づかない異常や問題点を発見します。
 

このような能力は、一見すると非効率に見える定型的な作業の繰り返しの中から生まれています。かといって、今更かつてのやり方に回帰できないでしょうが、生のデータを扱う時間を補完することも必要かもしれません。
 

参考文献

「絵で見てわかる RPAの仕組み」 西村 泰洋 著 翔泳社
 

 

経営コラム ものづくりの未来と経営

人工知能、フィンテック、5G、技術の進歩は加速しています。また先進国の少子高齢化、格差の拡大と資源争奪など、私たちを取り巻く社会も変化しています。そのような中

ものづくりはどのように変わっていくのでしょうか?

未来の組織や経営は何が求められるのでしょうか?

経営コラム「ものづくりの未来と経営」は、こういった課題に対するヒントになるコラムです。

こちらにご登録いただきますと、更新情報のメルマガをお送りします。
(登録いただいたメールアドレスは、メルマガ以外には使用しませんので、ご安心ください。)

経営コラムのバックナンバーはこちらをご参照ください。
 

中小企業でもできる簡単な原価計算のやり方

 
製造原価、アワーレートを決算書から計算する独自の手法です。中小企業も簡単に個々の製品の原価が計算できます。以下の書籍、セミナーで紹介しています。

書籍「中小企業・小規模企業のための個別製造原価の手引書」

中小企業の現場の実務に沿ったわかりやすい個別製品の原価の手引書です。

基本的な計算方法を解説した【基礎編】と、自動化、外段取化の原価や見えない損失の計算など現場の課題を原価で解説した【実践編】があります。

ご購入方法

中小企業・小規模企業のための個別製造原価の手引書 【基礎編】

中小企業・小規模企業のための
個別製造原価の手引書 【基礎編】
価格 ¥2,000 + 消費税(¥200)+送料

中小企業・小規模企業のための
個別製造原価の手引書 【実践編】
価格 ¥3,000 + 消費税(¥300)+送料
 

ご購入及び詳細はこちらをご参照願います。
 

書籍「中小製造業の『製造原価と見積価格への疑問』にすべて答えます!」日刊工業新聞社

書籍「中小製造業の『製造原価と見積価格への疑問』にすべて答えます!」
普段疑問に思っている間接費・販管費やアワーレートなど原価と見積について、分かりやすく書きました。会計の知識がなくてもすらすら読める本です。原価管理や経理の方にもお勧めします。

こちら(アマゾン)から購入できます。
 
 

 

セミナー

原価計算と見積、価格交渉のセミナーを行っています。

会場開催はこちらからお願いします。

オンライン開催はこちらからお願いします。
 

 

簡単、低価格の原価計算システム

 

数人の会社から使える個別原価計算システム「利益まっくす」

「この製品は、本当はいくらでできているだろうか?」

多くの経営者の疑問です。「利益まっくす」は中小企業が簡単に個別原価を計算できるて価格のシステムです。

設備・現場のアワーレートの違いが容易に計算できます。
間接部門や工場の間接費用も適切に分配されます。

クラウド型でインストール不要、1ライセンスで複数のPCで使えます。

利益まっくすは長年製造業をコンサルティングしてきた当社が製造業の収益改善のために開発したシステムです。

ご関心のある方はこちらからお願いします。詳しい資料を無料でお送りします。

 

]]>
https://ilink-corp.co.jp/6256.html/feed 0
次世代移動体通信5Gでビジネスはどう変わるか? https://ilink-corp.co.jp/5744.html https://ilink-corp.co.jp/5744.html#respond Thu, 22 Oct 2020 04:58:44 +0000 https://ilink-corp.co.jp/?p=5744 No related posts. ]]> 次世代移動体通信5Gとは? その特徴

5Gとは「第5世代移動通信システム」を意味する言葉です。GはGenerationを表します。
 

移動体通信は1979年に始まったアナログ方式(1G)から、1993年のデジタル方式(2G)によりメールなどテキストデータの送信が可能になりました。そして2001年に3Gが始まり高速化・大容量化によりウェブサイトや写真などのコンテンツがストレスなく使えるようになりました。
 

さらに2010年から始まった4G(LTE)により高速化・大容量化が加速し、動画やゲームコンテンツなどのリアルタイム視聴がストレスなくできるようになりました。
 

図1 移動体通信の変遷

5Gの特徴1 高速大容量通信

通信速度は4Gの110Mbps~1Gbpsに対して、5Gは下り20Gbps、上り10Gbpsとなり、100倍以上の高速化が実現するといわれています。これにより2010年に対して1,000倍以上のトラフィックに対応できます。
 

5Gの特徴2低遅延

通信の遅延は4Gの10msに対し、5Gは1msと1/10になり、よりリアルタイムでの情報収集や機器の制御が実現します。
 

5Gの特徴3多数同時接続

基地局に同時接続可能な端末は、4Gの10倍以上の100万台/㎢で、IoT機器も含め多くの端末が同時に使用できます。
 

[caption id="attachment_5746" align="alignnone" width="450"]図2  5Gの特徴 図2 5Gの特徴


 

【5Gの技術】

  • 高い周波数

より多くの信号を送信するために電波の周波数を、4Gの3.5GHzに対し、5Gはより高い周波数帯(3.7GHz帯、4.5GHz帯、28GHz帯)を使用します。周波数6GHz未満の「Sub6」(3.7GHz帯と4.5GHz帯)と、高周波帯「ミリ波」(28GHz帯)を組み合わせ、通信の制御部分はSub6でエリアを広くカバーし、コンテンツ部分にミリ波を使用して高速・大容量通信を実現します。
 

一方、周波数が高くなると電波の直進性が高くなり、遠くまで届きにくく、ビルなどの障害物の影響を受けやすくなります。
 

そこで5Gは、MIMO(multiple-input and multiple-output、マイモ)「超多素子アンテナ技術」を使い、送信側と受信側で複数のアンテナを用いて複数に分割された異なるデータを同時に送信、また受信をして通信速度を上げます。このMIMOは4Gで既に使われていましたが、5Gではこれを発展させたMassive MIMOを使用、多数のアンテナを使ったビームフォーミング(電波の放射技術)により、従来複数でシェアしていた電波をひとりひとりに割り当てることができるようになります。
 

これにより駅や繁華街など人が多く集まる場所でも通信速度が遅くならず快適なモバイル通信が提供できます。Massive MIMOはソフトバンクなど、一部の4Gサービスで実運用が始まっています。
 

図3 現在の状況と5Gの違い

図3 現在の状況と5Gの違い


 

  • エッジコンピューティング

5Gでは基地局と機器の通信の遅延は1msになります。しかし基地局とサーバーとの通信時間はもっと長いことがあり、これが問題になります。今まで映像の符号化や復元処理をサーバーで行うため、サーバーと端末の通信時間がかかっていました。
 

そこで基地局の近くにエッジ・サーバーを設置し、エッジ・サーバーで処理するMEC(Mobile Edge Computing)により低遅延を実現します。これは今後自動運転や遠隔医療、機械の遠隔操作など高いリアルタイム性を求められるところで不可欠な技術です。
 

図4 エッジ・サーバーで処理する方法へ

図4 エッジ・サーバーで処理する方法へ


 

  • ネットワークスライシング

従来の移動体通信はどの機器に対しても、ひとつのネットワーク、同じ基準で運用されていました。(通信速度による価格の差はありましたが) 
 

ネットワークスライシングは、用途に応じてデータを送る単位を変えて、通信速度とデータ量のニーズを満たす方法です。低遅延が必要な用途では一度に送るデータのサイズを小さくし、大容量のデータ伝送が必要な用途では一度に送るデータの帯域を大きく取り通信速度よりも伝送時間を優先します。
 

図5 ネットワークスライシング

図5 ネットワークスライシング


 

自動運転などで低遅延を実現するには、エッジ・サーバーとネットワークスライシングが不可欠です。
 

【5Gの普及】

5G対応デバイスが普及するためには、基地局の整備が必須です。当面は基地局があるところは5G、ないところは4Gでの運用になりますが、基地局が少なければユーザーは5Gの恩恵が受けられず普及が進みません。一方5Gは4Gよりも建物の影の影響を受けやすく、より多くの中継点が必要になります。
 

5Gの今後

スマホと動画

今後5Gが普及することで成長が期待されるサービスは、スマホアプリ、テレビ、動画、ビデオゲームなど既にある市場です。5Gは高速・大容量ですが、際立って新しいサービスはなく、業界の盛んなPRほどには顧客は買い替えしないかもしれません。
 

ハイプ・サイクル

新技術に対する期待と失望をガートナー社はハイプ・サイクル、つまり過度の興奮や誇張(hype)、それに続く失望として説明しています。
 

  1. 黎明期
  2. 新製品の発表の報道やイベントにより、世間の注目を浴び関心が高まります。

  3. 流行期
  4. 世間の注目が大きくなり、人々に興奮と非常に大きな期待が生じます。一方で成功事例も出ますが、多くは失敗に終わります。

  5. 幻滅期
  6. 宣伝されたほどの成果が出ないため、人々に失望が広がり幻滅期に入ります。報道も取り上げなくなり、人々の関心が失われます。

  7. 回復期
  8. 具体的な成功例が増えて人々はその製品の良い点と活用方法を徐々に理解しますが、保守的な顧客は様子を見ています。

  9. 安定期
  10. 多くの人々にメリットが認知され、広く宣伝され受け入れらます。製品や技術はより安定し、さらに改良したものが現れます。一方、その製品の市場でのボリュームは、広い市場に波及するものか、ニッチ市場に限定されるかは、製品によって異なります。

 

図6

図6 ハイプ・サイクルと5Gの流れ (Wikipediaより)

 

5G普及後の世界

経営コンサルタントのクロサカタツヤ氏は、5Gによって変わる未来の特徴を以下のように述べています。
 

① 周囲と溶け込む

ウェアラブル・デバイスやスマートスピーカー、他の様々なIoTデバイスが広まり、それまでのような「コンピューターやスマートフォンを使う」という意識がなく、気づかない間に自然に動いている社会になります。
 

② 境目のない世界

様々な機器が常時サーバーとつながったフルコネクテッドな状態が当たり前になります。これらの機器から送られた情報を元に、シミュレーションや予測を当たり前のように受け取るようになります。私たちの意識にリアルとバーチャルの境目がなくなっていきます。
 

③ 予測を前提とした社会

フルコネクテッドな機器から収集した大量のデータをAIを活用して分析することで、未来の出来事を高い確率で予測できるようになり、予測結果を元に最適な行動を取るようになります。例えば病院や飲食店の混雑や渋滞などを事前にすべて予測し、ストレスのない旅行計画を立てることができます。
 

5Gを光ファイバーケーブル網の代用に

日本の光ファイバーケーブル網(FTTH)の利用可能世帯率は98%、ほぼ全国のエリアがカバーされています。しかしアメリカでは30%、70%の家庭が高速通信網のサービスが受けられません。そこで5Gを高速・大容量の固定回線サービスとして使う動きがあります。
 

新たなサービス

コンサートやスポーツなどのライブ中継で、多数のカメラで正面以外に「上から」「クローズアップ」等様々な視点での映像を、視聴者が自分で選択するサービスが生まれます。会場で観戦しているよりも、様々な体験ができることで高い付加価値が生まれます。
 

コマツと大林組は、災害現場など危険な場所での建機の運転を5Gを使って遠隔で行う取り組みを行っています。5Gではスマホなどの端末と基地局に求められる仕様が近づくため、スマホのハードウェアを多数使用することで基地局のコストを飛躍的に下げることができます。
 

同様に様々な産業機器の通信部分もスマホの技術を活用することで価格を大幅に下げることができます。
 

特定の範囲のみで独自の5Gネットワークを構築するローカル5G技術は、独自のSIMを発行して、他から全くアクセスできないようにできます。それには独自のハードウェアが必要ですが、高いセキュリティが実現します。
 

図7  ローカル5G

図7 ローカル5G


 

当面の間、5Gは主に従来から需要のある動画配信やゲームなどに活用されると予想されます。
 

一方、高速・大容量、低遅延、同時多数接続という5Gの特徴は今後様々な分野に活用される可能性があります。そのひとつひとつは動画配信など市場に比べて大きくないかもしれませんが、こういったロングテール的な用途の中から新たな市場が生まれる可能性があります。
 

図8

図8 5Gの用途

 

参考文献

「5Gでビジネスはどう変わるか」 クロサカタツヤ 著 日経BP
 

本コラムは2020年10月18日「未来戦略ワークショップ」のテキストから作成しました。
 

経営コラム ものづくりの未来と経営

人工知能、フィンテック、5G、技術の進歩は加速しています。また先進国の少子高齢化、格差の拡大と資源争奪など、私たちを取り巻く社会も変化しています。そのような中

ものづくりはどのように変わっていくのでしょうか?

未来の組織や経営は何が求められるのでしょうか?

経営コラム「ものづくりの未来と経営」は、こういった課題に対するヒントになるコラムです。

こちらにご登録いただきますと、更新情報のメルマガをお送りします。
(登録いただいたメールアドレスは、メルマガ以外には使用しませんので、ご安心ください。)

経営コラムのバックナンバーはこちらをご参照ください。
 

中小企業でもできる簡単な原価計算のやり方

 
製造原価、アワーレートを決算書から計算する独自の手法です。中小企業も簡単に個々の製品の原価が計算できます。以下の書籍、セミナーで紹介しています。

書籍「中小企業・小規模企業のための個別製造原価の手引書」

中小企業の現場の実務に沿ったわかりやすい個別製品の原価の手引書です。

基本的な計算方法を解説した【基礎編】と、自動化、外段取化の原価や見えない損失の計算など現場の課題を原価で解説した【実践編】があります。

ご購入方法

中小企業・小規模企業のための個別製造原価の手引書 【基礎編】

中小企業・小規模企業のための
個別製造原価の手引書 【基礎編】
価格 ¥2,000 + 消費税(¥200)+送料

中小企業・小規模企業のための
個別製造原価の手引書 【実践編】
価格 ¥3,000 + 消費税(¥300)+送料
 

ご購入及び詳細はこちらをご参照願います。
 

書籍「中小製造業の『製造原価と見積価格への疑問』にすべて答えます!」日刊工業新聞社

書籍「中小製造業の『製造原価と見積価格への疑問』にすべて答えます!」
普段疑問に思っている間接費・販管費やアワーレートなど原価と見積について、分かりやすく書きました。会計の知識がなくてもすらすら読める本です。原価管理や経理の方にもお勧めします。

こちら(アマゾン)から購入できます。
 
 

 

セミナー

原価計算と見積、価格交渉のセミナーを行っています。

会場開催はこちらからお願いします。

オンライン開催はこちらからお願いします。
 

 

簡単、低価格の原価計算システム

 

数人の会社から使える個別原価計算システム「利益まっくす」

「この製品は、本当はいくらでできているだろうか?」

多くの経営者の疑問です。「利益まっくす」は中小企業が簡単に個別原価を計算できるて価格のシステムです。

設備・現場のアワーレートの違いが容易に計算できます。
間接部門や工場の間接費用も適切に分配されます。

クラウド型でインストール不要、1ライセンスで複数のPCで使えます。

利益まっくすは長年製造業をコンサルティングしてきた当社が製造業の収益改善のために開発したシステムです。

ご関心のある方はこちらからお願いします。詳しい資料を無料でお送りします。

 

]]>
https://ilink-corp.co.jp/5744.html/feed 0